-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathloss_functions.py
282 lines (221 loc) · 11.9 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import torch
import torch.nn.functional as F
import diff_operators
import modules
import dataio
from kornia.losses import ssim_loss
def cross_entropy(mask, model_output, gt):
return {'img_loss': F.cross_entropy(model_output['cls'], gt['cls'])}
def color_loss(output, gt):
img_ref = F.normalize(output, p = 2, dim = 1)
ref_p = F.normalize(gt, p = 2, dim = 1)
loss_cos = 1 - torch.mean(F.cosine_similarity(img_ref, ref_p, dim=1))
return loss_cos
def color_mse_ray(model_output, gt):
return {'img_loss': ((model_output['new_img'] - gt['img']) ** 2).mean(), 'color_loss': color_loss(model_output['new_img'], gt['img'])}
def image_mse(mask, model_output, gt):
if mask is None:
return {'img_loss': ((model_output['model_out'] - gt['img']) ** 2).mean()}
else:
return {'img_loss': (mask * (model_output['model_out'] - gt['img']) ** 2).mean()}
def image_mse_lip(mask, model_output, gt):
if mask is None:
dic = {'img_loss': ((model_output['model_out'] - gt['img']) ** 2).mean()}
else:
dic = {'img_loss': (mask * (model_output['model_out'] - gt['img']) ** 2).mean()}
dic['c_loss'] = 1e-4 * model_output['c']
if 'grad' in model_output:
dic['grad'] = 1e-6 * torch.sum(torch.linalg.norm(model_output['grad'], dim=1, ord=1))
return dic
def image_mse_grad(mask, model_output, gt):
if mask is None:
dic = {'img_loss': ((model_output['model_out'] - gt['img']) ** 2).mean()}
else:
dic = {'img_loss': (mask * (model_output['model_out'] - gt['img']) ** 2).mean()}
dic['grad_loss'] = torch.abs(model_output['new_img'] - gt['gradients']).mean() * 0.1
return dic
def image_mse_grad_only(mask, model_output, gt):
dic = {}
dic['grad_loss'] = torch.square(model_output['new_img'] - gt['gradients']).mean()
sz = 32
dic['grad_loss'] += ssim_loss(model_output['new_img'].view(1, 1, sz, sz) * 256, gt['gradients'].view(1, 1, sz, sz) * 256, 7)
return dic
def image_mse_ray(mask, model_output, gt):
dic = {}
dic['grad_loss'] = torch.abs(model_output['new_img'] - gt['img']).mean()
return dic
def image_l1(mask, model_output, gt):
if mask is None:
return {'img_loss': torch.abs(model_output['model_out'] - gt['img']).mean()}
else:
return {'img_loss': (mask * torch.abs(model_output['model_out'] - gt['img'])).mean()}
def image_mse_TV_prior(mask, k1, model, model_output, gt):
coords_rand = 2 * (torch.rand((model_output['model_in'].shape[0],
model_output['model_in'].shape[1] // 2,
model_output['model_in'].shape[2])).cuda() - 0.5)
rand_input = {'coords': coords_rand}
rand_output = model(rand_input)
if mask is None:
return {'img_loss': ((model_output['model_out'] - gt['img']) ** 2).mean(),
'prior_loss': k1 * (torch.abs(diff_operators.gradient(
rand_output['model_out'], rand_output['model_in']))).mean()}
else:
return {'img_loss': (mask * (model_output['model_out'] - gt['img']) ** 2).mean(),
'prior_loss': k1 * (torch.abs(diff_operators.gradient(
rand_output['model_out'], rand_output['model_in']))).mean()}
def image_mse_FH_prior(mask, k1, model, model_output, gt):
coords_rand = 2 * (torch.rand((model_output['model_in'].shape[0],
model_output['model_in'].shape[1] // 2,
model_output['model_in'].shape[2])).cuda() - 0.5)
rand_input = {'coords': coords_rand}
rand_output = model(rand_input)
img_hessian, status = diff_operators.hessian(rand_output['model_out'],
rand_output['model_in'])
img_hessian = img_hessian.view(*img_hessian.shape[0:2], -1)
hessian_norm = img_hessian.norm(dim=-1, keepdim=True)
if mask is None:
return {'img_loss': ((model_output['model_out'] - gt['img']) ** 2).mean(),
'prior_loss': k1 * (torch.abs(hessian_norm)).mean()}
else:
return {'img_loss': (mask * (model_output['model_out'] - gt['img']) ** 2).mean(),
'prior_loss': k1 * (torch.abs(hessian_norm)).mean()}
def latent_loss(model_output):
return torch.mean(model_output['latent_vec'] ** 2)
def hypo_weight_loss(model_output):
weight_sum = 0
total_weights = 0
for weight in model_output['hypo_params'].values():
weight_sum += torch.sum(weight ** 2)
total_weights += weight.numel()
return weight_sum * (1 / total_weights)
def image_hypernetwork_loss(mask, kl, fw, model_output, gt):
return {'img_loss': image_mse(mask, model_output, gt)['img_loss'],
'latent_loss': kl * latent_loss(model_output),
'hypo_weight_loss': fw * hypo_weight_loss(model_output)}
def function_mse(model_output, gt):
return {'func_loss': ((model_output['model_out'] - gt['func']) ** 2).mean()}
def gradients_mse(model_output, gt):
# compute gradients on the model
gradients = diff_operators.gradient(model_output['model_out'], model_output['model_in'])
# compare them with the ground-truth
gradients_loss = torch.mean((gradients - gt['gradients']).pow(2).sum(-1))
return {'gradients_loss': gradients_loss}
def gradients_color_mse(model_output, gt):
# compute gradients on the model
gradients_r = diff_operators.gradient(model_output['model_out'][..., 0], model_output['model_in'])
gradients_g = diff_operators.gradient(model_output['model_out'][..., 1], model_output['model_in'])
gradients_b = diff_operators.gradient(model_output['model_out'][..., 2], model_output['model_in'])
gradients = torch.cat((gradients_r, gradients_g, gradients_b), dim=-1)
# compare them with the ground-truth
weights = torch.tensor([1e1, 1e1, 1., 1., 1e1, 1e1]).cuda()
gradients_loss = torch.mean((weights * (gradients[0:2] - gt['gradients']).pow(2)).sum(-1))
return {'gradients_loss': gradients_loss}
def laplace_mse(model_output, gt):
# compute laplacian on the model
laplace = diff_operators.laplace(model_output['model_out'], model_output['model_in'])
# compare them with the ground truth
laplace_loss = torch.mean((laplace - gt['laplace']) ** 2)
return {'laplace_loss': laplace_loss}
def wave_pml(model_output, gt):
source_boundary_values = gt['source_boundary_values']
x = model_output['model_in'] # (meta_batch_size, num_points, 3)
y = model_output['model_out'] # (meta_batch_size, num_points, 1)
squared_slowness = gt['squared_slowness']
dirichlet_mask = gt['dirichlet_mask']
batch_size = x.shape[1]
du, status = diff_operators.jacobian(y, x)
dudt = du[..., 0]
if torch.all(dirichlet_mask):
diff_constraint_hom = torch.Tensor([0])
else:
hess, status = diff_operators.jacobian(du[..., 0, :], x)
lap = hess[..., 1, 1, None] + hess[..., 2, 2, None]
dudt2 = hess[..., 0, 0, None]
diff_constraint_hom = dudt2 - 1 / squared_slowness * lap
dirichlet = y[dirichlet_mask] - source_boundary_values[dirichlet_mask]
neumann = dudt[dirichlet_mask]
return {'dirichlet': torch.abs(dirichlet).sum() * batch_size / 1e1,
'neumann': torch.abs(neumann).sum() * batch_size / 1e2,
'diff_constraint_hom': torch.abs(diff_constraint_hom).sum()}
def helmholtz_pml(model_output, gt):
source_boundary_values = gt['source_boundary_values']
if 'rec_boundary_values' in gt:
rec_boundary_values = gt['rec_boundary_values']
wavenumber = gt['wavenumber'].float()
x = model_output['model_in'] # (meta_batch_size, num_points, 2)
y = model_output['model_out'] # (meta_batch_size, num_points, 2)
squared_slowness = gt['squared_slowness'].repeat(1, 1, y.shape[-1] // 2)
batch_size = x.shape[1]
full_waveform_inversion = False
if 'pretrain' in gt:
pred_squared_slowness = y[:, :, -1] + 1.
if torch.all(gt['pretrain'] == -1):
full_waveform_inversion = True
pred_squared_slowness = torch.clamp(y[:, :, -1], min=-0.999) + 1.
squared_slowness_init = torch.stack((torch.ones_like(pred_squared_slowness),
torch.zeros_like(pred_squared_slowness)), dim=-1)
squared_slowness = torch.stack((pred_squared_slowness, torch.zeros_like(pred_squared_slowness)), dim=-1)
squared_slowness = torch.where((torch.abs(x[..., 0, None]) > 0.75) | (torch.abs(x[..., 1, None]) > 0.75),
squared_slowness_init, squared_slowness)
y = y[:, :, :-1]
du, status = diff_operators.jacobian(y, x)
dudx1 = du[..., 0]
dudx2 = du[..., 1]
a0 = 5.0
# let pml extend from -1. to -1 + Lpml and 1 - Lpml to 1.0
Lpml = 0.5
dist_west = -torch.clamp(x[..., 0] + (1.0 - Lpml), max=0)
dist_east = torch.clamp(x[..., 0] - (1.0 - Lpml), min=0)
dist_south = -torch.clamp(x[..., 1] + (1.0 - Lpml), max=0)
dist_north = torch.clamp(x[..., 1] - (1.0 - Lpml), min=0)
sx = wavenumber * a0 * ((dist_west / Lpml) ** 2 + (dist_east / Lpml) ** 2)[..., None]
sy = wavenumber * a0 * ((dist_north / Lpml) ** 2 + (dist_south / Lpml) ** 2)[..., None]
ex = torch.cat((torch.ones_like(sx), -sx / wavenumber), dim=-1)
ey = torch.cat((torch.ones_like(sy), -sy / wavenumber), dim=-1)
A = modules.compl_div(ey, ex).repeat(1, 1, dudx1.shape[-1] // 2)
B = modules.compl_div(ex, ey).repeat(1, 1, dudx1.shape[-1] // 2)
C = modules.compl_mul(ex, ey).repeat(1, 1, dudx1.shape[-1] // 2)
a, _ = diff_operators.jacobian(modules.compl_mul(A, dudx1), x)
b, _ = diff_operators.jacobian(modules.compl_mul(B, dudx2), x)
a = a[..., 0]
b = b[..., 1]
c = modules.compl_mul(modules.compl_mul(C, squared_slowness), wavenumber ** 2 * y)
diff_constraint_hom = a + b + c
diff_constraint_on = torch.where(source_boundary_values != 0.,
diff_constraint_hom - source_boundary_values,
torch.zeros_like(diff_constraint_hom))
diff_constraint_off = torch.where(source_boundary_values == 0.,
diff_constraint_hom,
torch.zeros_like(diff_constraint_hom))
if full_waveform_inversion:
data_term = torch.where(rec_boundary_values != 0, y - rec_boundary_values, torch.Tensor([0.]).cuda())
else:
data_term = torch.Tensor([0.])
if 'pretrain' in gt: # we are not trying to solve for velocity
data_term = pred_squared_slowness - squared_slowness[..., 0]
return {'diff_constraint_on': torch.abs(diff_constraint_on).sum() * batch_size / 1e3,
'diff_constraint_off': torch.abs(diff_constraint_off).sum(),
'data_term': torch.abs(data_term).sum() * batch_size / 1}
def sdf(model_output, gt):
'''
x: batch of input coordinates
y: usually the output of the trial_soln function
'''
gt_sdf = gt['sdf']
gt_normals = gt['normals']
coords = model_output['model_in']
pred_sdf = model_output['model_out']
gradient = diff_operators.gradient(pred_sdf, coords)
# Wherever boundary_values is not equal to zero, we interpret it as a boundary constraint.
sdf_constraint = torch.where(gt_sdf != -1, pred_sdf, torch.zeros_like(pred_sdf))
inter_constraint = torch.where(gt_sdf != -1, torch.zeros_like(pred_sdf), torch.exp(-1e2 * torch.abs(pred_sdf)))
normal_constraint = torch.where(gt_sdf != -1, 1 - F.cosine_similarity(gradient, gt_normals, dim=-1)[..., None],
torch.zeros_like(gradient[..., :1]))
grad_constraint = torch.abs(gradient.norm(dim=-1) - 1)
# Exp # Lapl
# -----------------
return {'sdf': torch.abs(sdf_constraint).mean() * 3e3, # 1e4 # 3e3
'inter': inter_constraint.mean() * 1e2, # 1e2 # 1e3
'normal_constraint': normal_constraint.mean() * 1e2, # 1e2
'grad_constraint': grad_constraint.mean() * 5e1} # 1e1 # 5e1
# inter = 3e3 for ReLU-PE