-
Notifications
You must be signed in to change notification settings - Fork 318
/
Copy pathtest.py
100 lines (92 loc) · 4.21 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from __future__ import print_function
import os
import warnings
warnings.filterwarnings('ignore')
import torch
import pickle
import argparse
import numpy as np
from m2det import build_net
from utils.timer import Timer
import torch.backends.cudnn as cudnn
from layers.functions import Detect,PriorBox
from data import BaseTransform
from configs.CC import Config
from tqdm import tqdm
from utils.core import *
parser = argparse.ArgumentParser(description='M2Det Testing')
parser.add_argument('-c', '--config', default='configs/m2det320_vgg.py', type=str)
parser.add_argument('-d', '--dataset', default='COCO', help='VOC or COCO version')
parser.add_argument('-m', '--trained_model', default=None, type=str, help='Trained state_dict file path to open')
parser.add_argument('--test', action='store_true', help='to submit a test file')
args = parser.parse_args()
print_info('----------------------------------------------------------------------\n'
'| M2Det Evaluation Program |\n'
'----------------------------------------------------------------------', ['yellow','bold'])
global cfg
cfg = Config.fromfile(args.config)
if not os.path.exists(cfg.test_cfg.save_folder):
os.mkdir(cfg.test_cfg.save_folder)
anchor_config = anchors(cfg)
print_info('The Anchor info: \n{}'.format(anchor_config))
priorbox = PriorBox(anchor_config)
with torch.no_grad():
priors = priorbox.forward()
if cfg.test_cfg.cuda:
priors = priors.cuda()
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.005):
if not os.path.exists(save_folder):
os.mkdir(save_folder)
num_images = len(testset)
print_info('=> Total {} images to test.'.format(num_images),['yellow','bold'])
num_classes = cfg.model.m2det_config.num_classes
all_boxes = [[[] for _ in range(num_images)] for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
tot_detect_time, tot_nms_time = 0, 0
print_info('Begin to evaluate',['yellow','bold'])
for i in tqdm(range(num_images)):
img = testset.pull_image(i)
# step1: CNN detection
_t['im_detect'].tic()
boxes, scores = image_forward(img, net, cuda, priors, detector, transform)
detect_time = _t['im_detect'].toc()
# step2: Post-process: NMS
_t['misc'].tic()
nms_process(num_classes, i, scores, boxes, cfg, thresh, all_boxes, max_per_image)
nms_time = _t['misc'].toc()
tot_detect_time += detect_time if i > 0 else 0
tot_nms_time += nms_time if i > 0 else 0
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print_info('===> Evaluating detections',['yellow','bold'])
testset.evaluate_detections(all_boxes, save_folder)
print_info('Detect time per image: {:.3f}s'.format(tot_detect_time / (num_images-1)))
print_info('Nms time per image: {:.3f}s'.format(tot_nms_time / (num_images - 1)))
print_info('Total time per image: {:.3f}s'.format((tot_detect_time + tot_nms_time) / (num_images - 1)))
print_info('FPS: {:.3f} fps'.format((num_images - 1) / (tot_detect_time + tot_nms_time)))
if __name__ == '__main__':
net = build_net('test',
size = cfg.model.input_size,
config = cfg.model.m2det_config)
init_net(net, cfg, args.trained_model)
print_info('===> Finished constructing and loading model',['yellow','bold'])
net.eval()
_set = 'eval_sets' if not args.test else 'test_sets'
testset = get_dataloader(cfg, args.dataset, _set)
if cfg.test_cfg.cuda:
net = net.cuda()
cudnn.benchmark = True
else:
net = net.cpu()
detector = Detect(cfg.model.m2det_config.num_classes, cfg.loss.bkg_label, anchor_config)
save_folder = os.path.join(cfg.test_cfg.save_folder, args.dataset)
_preprocess = BaseTransform(cfg.model.input_size, cfg.model.rgb_means, (2, 0, 1))
test_net(save_folder,
net,
detector,
cfg.test_cfg.cuda,
testset,
transform = _preprocess,
max_per_image = cfg.test_cfg.topk,
thresh = cfg.test_cfg.score_threshold)