-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathiasam_app.py
809 lines (662 loc) · 36.4 KB
/
iasam_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
import argparse
# import math
import gc
import os
import platform
if platform.system() == "Darwin":
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
if platform.system() == "Windows":
os.environ["XFORMERS_FORCE_DISABLE_TRITON"] = "1"
import random
import traceback
from importlib.util import find_spec
import cv2
import gradio as gr
import numpy as np
import torch
from diffusers import (DDIMScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
KDPM2AncestralDiscreteScheduler, KDPM2DiscreteScheduler,
StableDiffusionInpaintPipeline)
from PIL import Image, ImageFilter
from PIL.PngImagePlugin import PngInfo
from torch.hub import download_url_to_file
from torchvision import transforms
import inpalib
from ia_check_versions import ia_check_versions
from ia_config import IAConfig, get_ia_config_index, set_ia_config, setup_ia_config_ini
from ia_devices import devices
from ia_file_manager import IAFileManager, download_model_from_hf, ia_file_manager
from ia_logging import ia_logging
from ia_threading import clear_cache_decorator
from ia_ui_gradio import reload_javascript
from ia_ui_items import (get_cleaner_model_ids, get_inp_model_ids, get_padding_mode_names,
get_sam_model_ids, get_sampler_names)
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config, HDStrategy, LDMSampler, SDSampler
print("platform:", platform.system())
reload_javascript()
if find_spec("xformers") is not None:
xformers_available = True
else:
xformers_available = False
parser = argparse.ArgumentParser(description="Inpaint Anything")
parser.add_argument("--save-seg", action="store_true", help="Save the segmentation image generated by SAM.")
parser.add_argument("--offline", action="store_true", help="Execute inpainting using an offline network.")
parser.add_argument("--sam-cpu", action="store_true", help="Perform the Segment Anything operation on CPU.")
args = parser.parse_args()
IAConfig.global_args.update(args.__dict__)
@clear_cache_decorator
def download_model(sam_model_id):
"""Download SAM model.
Args:
sam_model_id (str): SAM model id
Returns:
str: download status
"""
if "_hq_" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/sam-hq/resolve/main/" + sam_model_id
elif "FastSAM" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/FastSAM/resolve/main/" + sam_model_id
elif "mobile_sam" in sam_model_id:
url_sam = "https://huggingface.co/Uminosachi/MobileSAM/resolve/main/" + sam_model_id
elif "sam2_" in sam_model_id:
url_sam = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/" + sam_model_id
else:
url_sam = "https://dl.fbaipublicfiles.com/segment_anything/" + sam_model_id
sam_checkpoint = os.path.join(ia_file_manager.models_dir, sam_model_id)
if not os.path.isfile(sam_checkpoint):
try:
download_url_to_file(url_sam, sam_checkpoint)
except Exception as e:
ia_logging.error(str(e))
return str(e)
return IAFileManager.DOWNLOAD_COMPLETE
else:
return "Model already exists"
sam_dict = dict(sam_masks=None, mask_image=None, cnet=None, orig_image=None, pad_mask=None)
def save_mask_image(mask_image, save_mask_chk=False):
"""Save mask image.
Args:
mask_image (np.ndarray): mask image
save_mask_chk (bool, optional): If True, save mask image. Defaults to False.
Returns:
None
"""
if save_mask_chk:
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(mask_image).save(save_name)
@clear_cache_decorator
def input_image_upload(input_image, sam_image, sel_mask):
global sam_dict
sam_dict["orig_image"] = input_image
sam_dict["pad_mask"] = None
if (sam_dict["mask_image"] is None or not isinstance(sam_dict["mask_image"], np.ndarray) or
sam_dict["mask_image"].shape != input_image.shape):
sam_dict["mask_image"] = np.zeros_like(input_image, dtype=np.uint8)
ret_sel_image = cv2.addWeighted(input_image, 0.5, sam_dict["mask_image"], 0.5, 0)
if sam_image is None or not isinstance(sam_image, dict) or "image" not in sam_image:
sam_dict["sam_masks"] = None
ret_sam_image = np.zeros_like(input_image, dtype=np.uint8)
elif sam_image["image"].shape == input_image.shape:
ret_sam_image = gr.update()
else:
sam_dict["sam_masks"] = None
ret_sam_image = gr.update(value=np.zeros_like(input_image, dtype=np.uint8))
if sel_mask is None or not isinstance(sel_mask, dict) or "image" not in sel_mask:
ret_sel_mask = ret_sel_image
elif sel_mask["image"].shape == ret_sel_image.shape and np.all(sel_mask["image"] == ret_sel_image):
ret_sel_mask = gr.update()
else:
ret_sel_mask = gr.update(value=ret_sel_image)
return ret_sam_image, ret_sel_mask, gr.update(interactive=True)
@clear_cache_decorator
def run_padding(input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode="edge"):
global sam_dict
if input_image is None or sam_dict["orig_image"] is None:
sam_dict["orig_image"] = None
sam_dict["pad_mask"] = None
return None, "Input image not found"
orig_image = sam_dict["orig_image"]
height, width = orig_image.shape[:2]
pad_width, pad_height = (int(width * pad_scale_width), int(height * pad_scale_height))
ia_logging.info(f"resize by padding: ({height}, {width}) -> ({pad_height}, {pad_width})")
pad_size_w, pad_size_h = (pad_width - width, pad_height - height)
pad_size_l = int(pad_size_w * pad_lr_barance)
pad_size_r = pad_size_w - pad_size_l
pad_size_t = int(pad_size_h * pad_tb_barance)
pad_size_b = pad_size_h - pad_size_t
pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r), (0, 0)]
if padding_mode == "constant":
fill_value = 127
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode, constant_values=fill_value)
else:
pad_image = np.pad(orig_image, pad_width=pad_width, mode=padding_mode)
mask_pad_width = [(pad_size_t, pad_size_b), (pad_size_l, pad_size_r)]
pad_mask = np.zeros((height, width), dtype=np.uint8)
pad_mask = np.pad(pad_mask, pad_width=mask_pad_width, mode="constant", constant_values=255)
sam_dict["pad_mask"] = dict(segmentation=pad_mask.astype(bool))
return pad_image, "Padding done"
@clear_cache_decorator
def run_sam(input_image, sam_model_id, sam_image, anime_style_chk=False):
global sam_dict
if not inpalib.sam_file_exists(sam_model_id):
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, f"{sam_model_id} not found, please download"
if input_image is None:
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, "Input image not found"
set_ia_config(IAConfig.KEYS.SAM_MODEL_ID, sam_model_id, IAConfig.SECTIONS.USER)
if sam_dict["sam_masks"] is not None:
sam_dict["sam_masks"] = None
gc.collect()
ia_logging.info(f"input_image: {input_image.shape} {input_image.dtype}")
try:
sam_masks = inpalib.generate_sam_masks(input_image, sam_model_id, anime_style_chk)
sam_masks = inpalib.sort_masks_by_area(sam_masks)
sam_masks = inpalib.insert_mask_to_sam_masks(sam_masks, sam_dict["pad_mask"])
seg_image = inpalib.create_seg_color_image(input_image, sam_masks)
sam_dict["sam_masks"] = sam_masks
except Exception as e:
print(traceback.format_exc())
ia_logging.error(str(e))
ret_sam_image = None if sam_image is None else gr.update()
return ret_sam_image, "Segment Anything failed"
if IAConfig.global_args.get("save_seg", False):
save_name = "_".join([ia_file_manager.savename_prefix, os.path.splitext(sam_model_id)[0]]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(seg_image).save(save_name)
if sam_image is None or not isinstance(sam_image, dict) or "image" not in sam_image:
return seg_image, "Segment Anything complete"
else:
if sam_image["image"].shape == seg_image.shape and np.all(sam_image["image"] == seg_image):
return gr.update(), "Segment Anything complete"
else:
return gr.update(value=seg_image), "Segment Anything complete"
@clear_cache_decorator
def select_mask(input_image, sam_image, invert_chk, ignore_black_chk, sel_mask):
global sam_dict
if sam_dict["sam_masks"] is None or sam_image is None:
ret_sel_mask = None if sel_mask is None else gr.update()
return ret_sel_mask
sam_masks = sam_dict["sam_masks"]
# image = sam_image["image"]
mask = sam_image["mask"][:, :, 0:1]
try:
seg_image = inpalib.create_mask_image(mask, sam_masks, ignore_black_chk)
if invert_chk:
seg_image = inpalib.invert_mask(seg_image)
sam_dict["mask_image"] = seg_image
except Exception as e:
print(traceback.format_exc())
ia_logging.error(str(e))
ret_sel_mask = None if sel_mask is None else gr.update()
return ret_sel_mask
if input_image is not None and input_image.shape == seg_image.shape:
ret_image = cv2.addWeighted(input_image, 0.5, seg_image, 0.5, 0)
else:
ret_image = seg_image
if sel_mask is None or not isinstance(sel_mask, dict) or "image" not in sel_mask:
return ret_image
else:
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def expand_mask(input_image, sel_mask, expand_iteration=1):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
new_sel_mask = sam_dict["mask_image"]
expand_iteration = int(np.clip(expand_iteration, 1, 100))
new_sel_mask = cv2.dilate(new_sel_mask, np.ones((3, 3), dtype=np.uint8), iterations=expand_iteration)
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def apply_mask(input_image, sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
sel_mask_image = sam_dict["mask_image"]
sel_mask_mask = np.logical_not(sel_mask["mask"][:, :, 0:3].astype(bool)).astype(np.uint8)
new_sel_mask = sel_mask_image * sel_mask_mask
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
@clear_cache_decorator
def add_mask(input_image, sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
sel_mask_image = sam_dict["mask_image"]
sel_mask_mask = sel_mask["mask"][:, :, 0:3].astype(bool).astype(np.uint8)
new_sel_mask = sel_mask_image + (sel_mask_mask * np.invert(sel_mask_image, dtype=np.uint8))
sam_dict["mask_image"] = new_sel_mask
if input_image is not None and input_image.shape == new_sel_mask.shape:
ret_image = cv2.addWeighted(input_image, 0.5, new_sel_mask, 0.5, 0)
else:
ret_image = new_sel_mask
if sel_mask["image"].shape == ret_image.shape and np.all(sel_mask["image"] == ret_image):
return gr.update()
else:
return gr.update(value=ret_image)
def auto_resize_to_pil(input_image, mask_image):
init_image = Image.fromarray(input_image).convert("RGB")
mask_image = Image.fromarray(mask_image).convert("RGB")
assert init_image.size == mask_image.size, "The sizes of the image and mask do not match"
width, height = init_image.size
new_height = (height // 8) * 8
new_width = (width // 8) * 8
if new_width < width or new_height < height:
if (new_width / width) < (new_height / height):
scale = new_height / height
else:
scale = new_width / width
resize_height = int(height*scale+0.5)
resize_width = int(width*scale+0.5)
if height != resize_height or width != resize_width:
ia_logging.info(f"resize: ({height}, {width}) -> ({resize_height}, {resize_width})")
init_image = transforms.functional.resize(init_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS)
mask_image = transforms.functional.resize(mask_image, (resize_height, resize_width), transforms.InterpolationMode.LANCZOS)
if resize_height != new_height or resize_width != new_width:
ia_logging.info(f"center_crop: ({resize_height}, {resize_width}) -> ({new_height}, {new_width})")
init_image = transforms.functional.center_crop(init_image, (new_height, new_width))
mask_image = transforms.functional.center_crop(mask_image, (new_height, new_width))
return init_image, mask_image
@clear_cache_decorator
def run_inpaint(input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk,
sampler_name="DDIM", iteration_count=1):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return
set_ia_config(IAConfig.KEYS.INP_MODEL_ID, inp_model_id, IAConfig.SECTIONS.USER)
save_mask_image(mask_image, save_mask_chk)
ia_logging.info(f"Loading model {inp_model_id}")
config_offline_inpainting = IAConfig.global_args.get("offline", False)
if config_offline_inpainting:
ia_logging.info("Run Inpainting on offline network: {}".format(str(config_offline_inpainting)))
local_files_only = False
local_file_status = download_model_from_hf(inp_model_id, local_files_only=True)
if local_file_status != IAFileManager.DOWNLOAD_COMPLETE:
if config_offline_inpainting:
ia_logging.warning(local_file_status)
return
else:
local_files_only = True
ia_logging.info("local_files_only: {}".format(str(local_files_only)))
if platform.system() == "Darwin" or devices.device == devices.cpu or ia_check_versions.torch_on_amd_rocm:
torch_dtype = torch.float32
else:
torch_dtype = torch.float16
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, local_files_only=local_files_only, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
if not config_offline_inpainting:
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
try:
pipe = StableDiffusionInpaintPipeline.from_pretrained(
inp_model_id, torch_dtype=torch_dtype, force_download=True, use_safetensors=True)
except Exception as e:
ia_logging.error(str(e))
return
else:
return
pipe.safety_checker = None
ia_logging.info(f"Using sampler {sampler_name}")
if sampler_name == "DDIM":
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Euler":
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "Euler a":
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "DPM2 Karras":
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config)
elif sampler_name == "DPM2 a Karras":
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config)
else:
ia_logging.info("Sampler fallback to DDIM")
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
if platform.system() == "Darwin":
pipe = pipe.to("mps" if ia_check_versions.torch_mps_is_available else "cpu")
pipe.enable_attention_slicing()
torch_generator = torch.Generator(devices.cpu)
else:
if ia_check_versions.diffusers_enable_cpu_offload and devices.device != devices.cpu:
ia_logging.info("Enable model cpu offload")
pipe.enable_model_cpu_offload()
else:
pipe = pipe.to(devices.device)
if xformers_available:
ia_logging.info("Enable xformers memory efficient attention")
pipe.enable_xformers_memory_efficient_attention()
else:
ia_logging.info("Enable attention slicing")
pipe.enable_attention_slicing()
if "privateuseone" in str(getattr(devices.device, "type", "")):
torch_generator = torch.Generator(devices.cpu)
else:
torch_generator = torch.Generator(devices.device)
init_image, mask_image = auto_resize_to_pil(input_image, mask_image)
width, height = init_image.size
output_list = []
iteration_count = iteration_count if iteration_count is not None else 1
for count in range(int(iteration_count)):
gc.collect()
if seed < 0 or count > 0:
seed = random.randint(0, 2147483647)
generator = torch_generator.manual_seed(seed)
pipe_args_dict = {
"prompt": prompt,
"image": init_image,
"width": width,
"height": height,
"mask_image": mask_image,
"num_inference_steps": ddim_steps,
"guidance_scale": cfg_scale,
"negative_prompt": n_prompt,
"generator": generator,
}
output_image = pipe(**pipe_args_dict).images[0]
if composite_chk:
dilate_mask_image = Image.fromarray(cv2.dilate(np.array(mask_image), np.ones((3, 3), dtype=np.uint8), iterations=4))
output_image = Image.composite(output_image, init_image, dilate_mask_image.convert("L").filter(ImageFilter.GaussianBlur(3)))
generation_params = {
"Steps": ddim_steps,
"Sampler": sampler_name,
"CFG scale": cfg_scale,
"Seed": seed,
"Size": f"{width}x{height}",
"Model": inp_model_id,
}
generation_params_text = ", ".join([k if k == v else f"{k}: {v}" for k, v in generation_params.items() if v is not None])
prompt_text = prompt if prompt else ""
negative_prompt_text = "\nNegative prompt: " + n_prompt if n_prompt else ""
infotext = f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
metadata = PngInfo()
metadata.add_text("parameters", infotext)
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(inp_model_id), str(seed)]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
output_image.save(save_name, pnginfo=metadata)
output_list.append(output_image)
yield output_list, max([1, iteration_count - (count + 1)])
@clear_cache_decorator
def run_cleaner(input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return None
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return None
save_mask_image(mask_image, cleaner_save_mask_chk)
ia_logging.info(f"Loading model {cleaner_model_id}")
if platform.system() == "Darwin":
model = ModelManager(name=cleaner_model_id, device=devices.cpu)
else:
model = ModelManager(name=cleaner_model_id, device=devices.device)
init_image, mask_image = auto_resize_to_pil(input_image, mask_image)
width, height = init_image.size
init_image = np.array(init_image)
mask_image = np.array(mask_image.convert("L"))
config = Config(
ldm_steps=20,
ldm_sampler=LDMSampler.ddim,
hd_strategy=HDStrategy.ORIGINAL,
hd_strategy_crop_margin=32,
hd_strategy_crop_trigger_size=512,
hd_strategy_resize_limit=512,
prompt="",
sd_steps=20,
sd_sampler=SDSampler.ddim
)
output_image = model(image=init_image, mask=mask_image, config=config)
output_image = cv2.cvtColor(output_image.astype(np.uint8), cv2.COLOR_BGR2RGB)
output_image = Image.fromarray(output_image)
save_name = "_".join([ia_file_manager.savename_prefix, os.path.basename(cleaner_model_id)]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
output_image.save(save_name)
del model
return [output_image]
@clear_cache_decorator
def run_get_alpha_image(input_image, sel_mask):
global sam_dict
if input_image is None or sam_dict["mask_image"] is None or sel_mask is None:
ia_logging.error("The image or mask does not exist")
return None, ""
mask_image = sam_dict["mask_image"]
if input_image.shape != mask_image.shape:
ia_logging.error("The sizes of the image and mask do not match")
return None, ""
alpha_image = Image.fromarray(input_image).convert("RGBA")
mask_image = Image.fromarray(mask_image).convert("L")
alpha_image.putalpha(mask_image)
save_name = "_".join([ia_file_manager.savename_prefix, "rgba_image"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
alpha_image.save(save_name)
return alpha_image, f"saved: {save_name}"
@clear_cache_decorator
def run_get_mask(sel_mask):
global sam_dict
if sam_dict["mask_image"] is None or sel_mask is None:
return None
mask_image = sam_dict["mask_image"]
save_name = "_".join([ia_file_manager.savename_prefix, "created_mask"]) + ".png"
save_name = os.path.join(ia_file_manager.outputs_dir, save_name)
Image.fromarray(mask_image).save(save_name)
return mask_image
def on_ui_tabs():
setup_ia_config_ini()
sampler_names = get_sampler_names()
sam_model_ids = get_sam_model_ids()
sam_model_index = get_ia_config_index(IAConfig.KEYS.SAM_MODEL_ID, IAConfig.SECTIONS.USER)
inp_model_ids = get_inp_model_ids()
inp_model_index = get_ia_config_index(IAConfig.KEYS.INP_MODEL_ID, IAConfig.SECTIONS.USER)
cleaner_model_ids = get_cleaner_model_ids()
padding_mode_names = get_padding_mode_names()
out_gallery_kwargs = dict(columns=2, height=520, object_fit="contain", preview=True)
block = gr.Blocks(analytics_enabled=False).queue()
block.title = "Inpaint Anything"
with block as inpaint_anything_interface:
with gr.Row():
gr.Markdown("## Inpainting with Segment Anything")
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
sam_model_id = gr.Dropdown(label="Segment Anything Model ID", elem_id="sam_model_id", choices=sam_model_ids,
value=sam_model_ids[sam_model_index], show_label=True)
with gr.Column():
with gr.Row():
load_model_btn = gr.Button("Download model", elem_id="load_model_btn")
with gr.Row():
status_text = gr.Textbox(label="", elem_id="status_text", max_lines=1, show_label=False, interactive=False)
with gr.Row():
input_image = gr.Image(label="Input image", elem_id="ia_input_image", source="upload", type="numpy", interactive=True)
with gr.Row():
with gr.Accordion("Padding options", elem_id="padding_options", open=False):
with gr.Row():
with gr.Column():
pad_scale_width = gr.Slider(label="Scale Width", elem_id="pad_scale_width", minimum=1.0, maximum=1.5, value=1.0, step=0.01)
with gr.Column():
pad_lr_barance = gr.Slider(label="Left/Right Balance", elem_id="pad_lr_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
with gr.Row():
with gr.Column():
pad_scale_height = gr.Slider(label="Scale Height", elem_id="pad_scale_height", minimum=1.0, maximum=1.5, value=1.0, step=0.01)
with gr.Column():
pad_tb_barance = gr.Slider(label="Top/Bottom Balance", elem_id="pad_tb_barance", minimum=0.0, maximum=1.0, value=0.5, step=0.01)
with gr.Row():
with gr.Column():
padding_mode = gr.Dropdown(label="Padding Mode", elem_id="padding_mode", choices=padding_mode_names, value="edge")
with gr.Column():
padding_btn = gr.Button("Run Padding", elem_id="padding_btn")
with gr.Row():
with gr.Column():
anime_style_chk = gr.Checkbox(label="Anime Style (Up Detection, Down mask Quality)", elem_id="anime_style_chk",
show_label=True, interactive=True)
with gr.Column():
sam_btn = gr.Button("Run Segment Anything", elem_id="sam_btn", variant="primary", interactive=False)
with gr.Tab("Inpainting", elem_id="inpainting_tab"):
prompt = gr.Textbox(label="Inpainting Prompt", elem_id="sd_prompt")
n_prompt = gr.Textbox(label="Negative Prompt", elem_id="sd_n_prompt")
with gr.Accordion("Advanced options", elem_id="inp_advanced_options", open=False):
composite_chk = gr.Checkbox(label="Mask area Only", elem_id="composite_chk", value=True, show_label=True, interactive=True)
with gr.Row():
with gr.Column():
sampler_name = gr.Dropdown(label="Sampler", elem_id="sampler_name", choices=sampler_names,
value=sampler_names[0], show_label=True)
with gr.Column():
ddim_steps = gr.Slider(label="Sampling Steps", elem_id="ddim_steps", minimum=1, maximum=100, value=20, step=1)
cfg_scale = gr.Slider(label="Guidance Scale", elem_id="cfg_scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
seed = gr.Slider(
label="Seed",
elem_id="sd_seed",
minimum=-1,
maximum=2147483647,
step=1,
value=-1,
)
with gr.Row():
with gr.Column():
inp_model_id = gr.Dropdown(label="Inpainting Model ID", elem_id="inp_model_id",
choices=inp_model_ids, value=inp_model_ids[inp_model_index], show_label=True)
with gr.Column():
with gr.Row():
inpaint_btn = gr.Button("Run Inpainting", elem_id="inpaint_btn", variant="primary")
with gr.Row():
save_mask_chk = gr.Checkbox(label="Save mask", elem_id="save_mask_chk",
value=False, show_label=False, interactive=False, visible=False)
iteration_count = gr.Slider(label="Iterations", elem_id="iteration_count", minimum=1, maximum=10, value=1, step=1)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False
).style(**out_gallery_kwargs)
else:
out_image = gr.Gallery(label="Inpainted image", elem_id="ia_out_image", show_label=False,
**out_gallery_kwargs)
with gr.Tab("Cleaner", elem_id="cleaner_tab"):
with gr.Row():
with gr.Column():
cleaner_model_id = gr.Dropdown(label="Cleaner Model ID", elem_id="cleaner_model_id",
choices=cleaner_model_ids, value=cleaner_model_ids[0], show_label=True)
with gr.Column():
with gr.Row():
cleaner_btn = gr.Button("Run Cleaner", elem_id="cleaner_btn", variant="primary")
with gr.Row():
cleaner_save_mask_chk = gr.Checkbox(label="Save mask", elem_id="cleaner_save_mask_chk",
value=False, show_label=False, interactive=False, visible=False)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False
).style(**out_gallery_kwargs)
else:
cleaner_out_image = gr.Gallery(label="Cleaned image", elem_id="ia_cleaner_out_image", show_label=False,
**out_gallery_kwargs)
with gr.Tab("Mask only", elem_id="mask_only_tab"):
with gr.Row():
with gr.Column():
get_alpha_image_btn = gr.Button("Get mask as alpha of image", elem_id="get_alpha_image_btn")
with gr.Column():
get_mask_btn = gr.Button("Get mask", elem_id="get_mask_btn")
with gr.Row():
with gr.Column():
alpha_out_image = gr.Image(label="Alpha channel image", elem_id="alpha_out_image", type="pil", image_mode="RGBA", interactive=False)
with gr.Column():
mask_out_image = gr.Image(label="Mask image", elem_id="mask_out_image", type="numpy", interactive=False)
with gr.Row():
with gr.Column():
get_alpha_status_text = gr.Textbox(label="", elem_id="get_alpha_status_text", max_lines=1, show_label=False, interactive=False)
with gr.Column():
gr.Markdown("")
with gr.Column():
with gr.Row():
gr.Markdown("Mouse over image: Press `S` key for Fullscreen mode, `R` key to Reset zoom")
with gr.Row():
if ia_check_versions.gradio_version_is_old:
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
show_label=False, interactive=True).style(height=480)
else:
sam_image = gr.Image(label="Segment Anything image", elem_id="ia_sam_image", type="numpy", tool="sketch", brush_radius=8,
show_label=False, interactive=True, height=480)
with gr.Row():
with gr.Column():
select_btn = gr.Button("Create Mask", elem_id="select_btn", variant="primary")
with gr.Column():
with gr.Row():
invert_chk = gr.Checkbox(label="Invert mask", elem_id="invert_chk", show_label=True, interactive=True)
ignore_black_chk = gr.Checkbox(label="Ignore black area", elem_id="ignore_black_chk", value=True, show_label=True, interactive=True)
with gr.Row():
if ia_check_versions.gradio_version_is_old:
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
show_label=False, interactive=True).style(height=480)
else:
sel_mask = gr.Image(label="Selected mask image", elem_id="ia_sel_mask", type="numpy", tool="sketch", brush_radius=12,
show_label=False, interactive=True, height=480)
with gr.Row():
with gr.Column():
expand_mask_btn = gr.Button("Expand mask region", elem_id="expand_mask_btn")
expand_mask_iteration_count = gr.Slider(label="Expand Mask Iterations",
elem_id="expand_mask_iteration_count", minimum=1, maximum=100, value=1, step=1)
with gr.Column():
apply_mask_btn = gr.Button("Trim mask by sketch", elem_id="apply_mask_btn")
add_mask_btn = gr.Button("Add mask by sketch", elem_id="add_mask_btn")
load_model_btn.click(download_model, inputs=[sam_model_id], outputs=[status_text])
input_image.upload(input_image_upload, inputs=[input_image, sam_image, sel_mask], outputs=[sam_image, sel_mask, sam_btn]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_initSamSelMask")
padding_btn.click(run_padding, inputs=[input_image, pad_scale_width, pad_scale_height, pad_lr_barance, pad_tb_barance, padding_mode],
outputs=[input_image, status_text])
sam_btn.click(run_sam, inputs=[input_image, sam_model_id, sam_image, anime_style_chk], outputs=[sam_image, status_text]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSamMask")
select_btn.click(select_mask, inputs=[input_image, sam_image, invert_chk, ignore_black_chk, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
expand_mask_btn.click(expand_mask, inputs=[input_image, sel_mask, expand_mask_iteration_count], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
apply_mask_btn.click(apply_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
add_mask_btn.click(add_mask, inputs=[input_image, sel_mask], outputs=[sel_mask]).then(
fn=None, inputs=None, outputs=None, _js="inpaintAnything_clearSelMask")
inpaint_btn.click(
run_inpaint,
inputs=[input_image, sel_mask, prompt, n_prompt, ddim_steps, cfg_scale, seed, inp_model_id, save_mask_chk, composite_chk,
sampler_name, iteration_count],
outputs=[out_image, iteration_count])
cleaner_btn.click(
run_cleaner,
inputs=[input_image, sel_mask, cleaner_model_id, cleaner_save_mask_chk],
outputs=[cleaner_out_image])
get_alpha_image_btn.click(
run_get_alpha_image,
inputs=[input_image, sel_mask],
outputs=[alpha_out_image, get_alpha_status_text])
get_mask_btn.click(
run_get_mask,
inputs=[sel_mask],
outputs=[mask_out_image])
return [(inpaint_anything_interface, "Inpaint Anything", "inpaint_anything")]
block, _, _ = on_ui_tabs()[0]
block.launch()