-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCyberbullyingDetection.py
279 lines (222 loc) · 9.96 KB
/
CyberbullyingDetection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
pd.options.mode.chained_assignment = None
#import requests as rq
import numpy as np
import re
#!pip install wordninja
import wordninja
#!pip install spacy
#import spacy
#spacy.cli.download("en_core_web_sm")
import nltk
from nltk.tokenize import word_tokenize
#nltk.download('punkt')
#!pip install contractions
import contractions
#!pip install vaderSentiment
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import sklearn
from sklearn.model_selection import train_test_split
from sklearn import svm, metrics
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
import mysql.connector
import pickle
mydb = mysql.connector.connect(
host = "localhost",
user = "root",
password = "my123SQL$",
database = "modeldata"
)
command = mydb.cursor()
class CyberbullyingDetection():
def string(self, data):
string = ' '
return (string.join(data))
def detectBullying(self, text):
tweet = pd.DataFrame(text, columns=['tweets_text'])
tweet = tweet.replace(to_replace= '\\r', value= '', regex=True)
tweet['tweets_text'] = tweet['tweets_text'].str.lower()
temp = ''
for index, row in enumerate(tweet['tweets_text']):
temp = re.sub(r'(\brt)|(http\S+)|(\d+)|(&(gt;)+)|(&(lt;)+)|(&(amp;)+)|([^\w\s])', '', str(row))
temp = re.sub('(\'| )|(\"| )|(_)', ' ', temp)
tweet['tweets_text'][index] = temp
for index, row in enumerate(tweet['tweets_text']):
temp = []
for word in row.split():
temp.append(contractions.fix(word))
tweet['tweets_text'][index] = self.string(temp)
command.execute("SELECT * FROM slang")
slangWords = pd.DataFrame(command, columns=['slang', 'word'])
slangWords = slangWords.replace(to_replace= '\\r', value= '', regex=True)
for num, row in enumerate(tweet['tweets_text']):
temp = []
for word in row.split():
found = 0
if (len(word)<6 and len(word)>2):
for index, slang in enumerate(slangWords['slang']):
if (slang == word):
temp.append(slangWords['word'][index])
found = 1
if (found != 1):
temp.append(word)
tweet['tweets_text'][num] = self.string(temp)
for index, row in enumerate(tweet['tweets_text']):
temp = []
for word in row.split():
if (len(word)>8):
unmunched = wordninja.split(word)
temp.append(self.string(unmunched))
else:
temp.append(word)
tweet['tweets_text'][index] = self.string(temp)
tokens = []
for row in tweet['tweets_text']:
tokens.append(word_tokenize(row))
tweet['tokens'] = tokens
command.execute("SELECT * FROM offensivewithseverity")
offenseWords = pd.DataFrame(command, columns=['word', 'severity'])
offenseWords = offenseWords.replace(to_replace= '\\r', value= '', regex=True)
command.execute("SELECT * FROM negation")
negationWords = pd.DataFrame(command, columns=['word'])
negationWords = negationWords.replace(to_replace= '\\r', value= '', regex=True)
totalWords, offensiveWords, severityWords = [], [], []
for row in tweet['tokens']:
words, temp1, temp2 = 0, [], []
for index1, token in enumerate(row):
words += 1
for index2, offensive in enumerate(offenseWords['word']):
if (token == offensive):
negation = 0
for negation in negationWords['word']: #Checking for negation words at most 2 words before the negative word
if (index1<1):
break
if (row[index1-1] == negation or row[index1-2] == negation):
negation = 1
break
if (negation != 1):
temp1.append(token)
temp2.append(offenseWords['severity'][index2])
totalWords.append(words)
offensiveWords.append(temp1)
severityWords.append(temp2)
tweet['total words'] = totalWords
tweet['offensive words'] = offensiveWords
tweet['severity words'] = severityWords
density = []
for total, offensive in zip(tweet['total words'], tweet['offensive words']):
density.append(len(offensive) / total)
tweet['density'] = density
compound = []
for row in tweet['tweets_text']:
polarity = SentimentIntensityAnalyzer().polarity_scores(row)
compound.append(polarity["compound"])
tweet['sentiment analysis'] = compound
severity, weights = [], [1, 2, 3, 4, 5]
for severe in tweet['severity words']:
count, product = [0] * 5, []
for num in severe:
if (num == '1'):
count[0] += 1
elif (num == '2'):
count[1] += 1
elif (num == '3'):
count[2] += 1
elif (num == '4'):
count[3] += 1
elif (num == '5'):
count[4] += 1
for num1, num2 in zip(count, weights):
product.append(num1 * num2)
totalProduct = sum(product)
totalCount = sum(count)
if (totalCount == 0):
severity.append(0)
else:
severity.append(totalProduct / totalCount)
tweet['severity'] = severity
tweetDataM1 = tweet[['density', 'severity', 'sentiment analysis']].copy()
tweetDataM1.head()
model = pickle.load(open("cyberbullyingdetection.sav", 'rb'))
cyberTarget = model.predict(tweetDataM1)
if self.string(cyberTarget) == 'cyberbullying':
tweet['cyberbullying'] = 'True'
else:
tweet['cyberbullying'] = 'False'
if (tweet['cyberbullying'].values == 'True'):
command.execute("SELECT * FROM ethnicityAndRaceGlossary")
ethnicityAndRaceGlossary = pd.DataFrame(command, columns=['word'])
ethnicityAndRaceGlossary = ethnicityAndRaceGlossary.replace(to_replace= '\\r', value= '', regex=True)
ethnicityAndRaceGlossary.head()
command.execute("SELECT * FROM ageGlossary")
ageDataGlossary = pd.DataFrame(command, columns=['word'])
ageDataGlossary = ageDataGlossary.replace(to_replace= '\\r', value= '', regex=True)
ageDataGlossary.head()
command.execute("SELECT * FROM genderGlossary")
genderDataGlossary = pd.DataFrame(command, columns=['word'])
genderDataGlossary = genderDataGlossary.replace(to_replace= '\\r', value= '', regex=True)
genderDataGlossary.head()
command.execute("SELECT * FROM religionGlossary")
religiousDataGlossary = pd.DataFrame(command, columns=['word'])
religiousDataGlossary = religiousDataGlossary.replace(to_replace= '\\r', value= '', regex=True)
religiousDataGlossary.head()
isEthnicityAndRace = []
for row in tweet['tokens']:
temp = 0
for token in row:
for glossary in ethnicityAndRaceGlossary['word']:
if (token == glossary):
temp += 1
break
isEthnicityAndRace.append(temp)
tweet['ethnicity and race'] = isEthnicityAndRace
isAge = []
for row in tweet['tokens']:
temp = 0
for token in row:
for glossary in ageDataGlossary['word']:
if (token == glossary):
temp += 1
break
isAge.append(temp)
tweet['age'] = isAge
isGender = []
for row in tweet['tokens']:
temp = 0
for token in row:
for glossary in genderDataGlossary['word']:
if (token == glossary):
temp += 1
break
isGender.append(temp)
tweet['gender'] = isGender
isReligious = []
for row in tweet['tokens']:
temp = 0
for token in row:
for glossary in religiousDataGlossary['word']:
if (token == glossary):
temp += 1
break
isReligious.append(temp)
tweet['religion'] = isReligious
tweetDataM2 = tweet[['age', 'gender', 'religion', 'ethnicity and race']].copy()
model = pickle.load(open("cyberbullyingtype.sav", 'rb'))
classifyTarget = model.predict(tweetDataM2)
print('\nOffensive Words: ', tweet['offensive words'][0], '\nSeverity Level: ', tweet['severity'][0], '\nType: ', classifyTarget)
else:
print("No offensive words!")
text = ["You're A retardHISPANIC, all you do is drink tequilla and mow lawns you weirdo beaner!"];
scan = CyberbullyingDetection()
scan.detectBullying(text)