-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathmain.py
108 lines (86 loc) · 3.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import json
import time
from tqdm import tqdm
import concurrent.futures
from datetime import datetime
import numpy as np
from config.config import result_dir, storage_interval, window_size, overlap_size, multi_process_num
from model.qwen import call_qwen_single_turn
from util.logger import get_logger
from util.data_loader import get_file_list, get_txt_content, capture_qa, merge_sub_qa_generation, save_to_file
logger = get_logger()
"""
每个线程产生 QA 对以及存储到子文件中
"""
def single_thread_generate(thread_num, interval, model_caller, storage_jsonl_path, contents):
storage_counter = 0
storage_list = []
for content in tqdm(contents):
try:
response = model_caller(content)
captured_qa = capture_qa(response)
if captured_qa is None:
continue
storage_list.extend(captured_qa)
storage_counter += 1
if storage_counter % interval == 0:
save_to_file(storage_jsonl_path, storage_list)
storage_counter = 0
storage_list = []
except Exception as exc:
logger.error("QA generation error : %s" % (exc))
if storage_list:
save_to_file(storage_jsonl_path, storage_list)
storage_list = []
"""
生成 QA 对
model_name: 可调用的模型名称,暂时只实现了 qwen
interval: 存储间隔,即每隔多少条存一次文件,过密的间隔会增大 IO 开销
"""
def generate_qa(
model_name: str = 'qwen',
interval: int = 10,
):
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
if model_name == 'qwen':
model_caller = call_qwen_single_turn
else:
logger.warning('This model is currently not supported and will call the default model - qwen.')
model_caller = call_qwen_single_turn
model_name = 'qwen'
logger.info(f'The called model is: {model_name}.')
logger.info(f'The storage interval is: {interval}.')
file_list = get_file_list()
storage_counter = 0
storage_list = []
for file_path in file_list:
contents = get_txt_content(file_path, window_size=window_size, overlap_size=overlap_size)
storage_list = []
_, file_name = os.path.split(file_path)
storage_jsonl_path = os.path.join(
result_dir, f'{current_time}-{file_name}-{model_name}.jsonl')
logger.info(f'The generated QA will be stored in {storage_jsonl_path}.')
# 基于并发个数切分 contents 内容
contents_array = np.array(contents)
chunks = np.array_split(contents_array, multi_process_num)
# 构建并发参数 list
parameters_list = list()
for thread_num, chunk in enumerate(chunks):
parameters_list.append(
[thread_num, interval, model_caller, storage_jsonl_path + f'-{thread_num}', list(chunk)]
)
# 并发生成 QA 对
with concurrent.futures.ThreadPoolExecutor(max_workers=multi_process_num) as executor:
# 创建一个Future列表,它们将对应每个worker_function的结果
futures = [executor.submit(single_thread_generate, *parameters) for parameters in parameters_list]
for future in concurrent.futures.as_completed(futures):
try:
future.result()
except Exception as exc:
logger.error("Thread generated an exception: %s" % (exc))
merge_sub_qa_generation(result_dir, storage_jsonl_path)
if __name__ == '__main__':
# 创建generated文件夹
os.makedirs('./data/generated', exist_ok=True)
generate_qa(interval=storage_interval)