-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathexport.py
46 lines (39 loc) · 1.74 KB
/
export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
######################################################################################
### Author/Developer: Nicolas CHEN
### Filename: export.py
### Version: 1.0
### Field of research: Deep Learning in medical imaging
### Purpose: This Python script creates the CSV file from XML files.
### Output: This Python script creates the file "test.csv"
### with all data needed: filename, class_name, x1,y1,x2,y2
######################################################################################
### HISTORY
### Version | Date | Author | Evolution
### 1.0 | 17/11/2018 | Nicolas CHEN | Initial version
######################################################################################
import os, sys, random
import xml.etree.ElementTree as ET
from glob import glob
import pandas as pd
from shutil import copyfile
annotations = glob('BCCD/Annotations/*.xml')
df = []
cnt = 0
for file in annotations:
#filename = file.split('/')[-1].split('.')[0] + '.jpg'
#filename = str(cnt) + '.jpg'
filename = file.split('\\')[-1]
filename =filename.split('.')[0] + '.jpg'
row = []
parsedXML = ET.parse(file)
for node in parsedXML.getroot().iter('object'):
blood_cells = node.find('name').text
xmin = int(node.find('bndbox/xmin').text)
xmax = int(node.find('bndbox/xmax').text)
ymin = int(node.find('bndbox/ymin').text)
ymax = int(node.find('bndbox/ymax').text)
row = [filename, blood_cells, xmin, xmax, ymin, ymax]
df.append(row)
cnt += 1
data = pd.DataFrame(df, columns=['filename', 'cell_type', 'xmin', 'xmax', 'ymin', 'ymax'])
data[['filename', 'cell_type', 'xmin', 'xmax', 'ymin', 'ymax']].to_csv('test.csv', index=False)