-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathedgesam.py
196 lines (190 loc) · 10.9 KB
/
edgesam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
'''
Function:
Implementation of EdgeSAM
Author:
Zhenchao Jin
'''
import torch
from .maskdecoder import MaskDecoder
from ..sam import SAM, SAMPredictor, SAMAutomaticMaskGenerator
from ..sam.amg import calculatestabilityscore, batchedmasktobox, isboxnearcropedge, uncropmasks, masktorlepytorch, MaskData
'''EdgeSAM'''
class EdgeSAM(SAM):
mask_threshold = 0.0
image_format = 'RGB'
def __init__(self, cfg, mode):
super(EdgeSAM, self).__init__(cfg=cfg, mode=mode)
self.mask_decoder = MaskDecoder(**cfg['head'])
self.stability_score_offset = cfg.get('stability_score_offset', 1.0)
'''inference'''
@torch.no_grad()
def inference(self, batched_input, num_multimask_outputs=1, use_stability_score=False):
input_images = torch.stack([self.preprocess(x['image']) for x in batched_input], dim=0)
image_embeddings = self.image_encoder(input_images)
outputs = []
for image_record, curr_embedding in zip(batched_input, image_embeddings):
if 'point_coords' in image_record:
points = (image_record['point_coords'], image_record['point_labels'])
else:
points = None
sparse_embeddings, dense_embeddings = self.prompt_encoder(
points=points, boxes=image_record.get('boxes', None), masks=image_record.get('mask_inputs', None),
)
low_res_masks, iou_predictions = self.mask_decoder(
image_embeddings=curr_embedding.unsqueeze(0), image_pe=self.prompt_encoder.getdensepe(), sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings, num_multimask_outputs=num_multimask_outputs,
)
if use_stability_score:
iou_predictions = calculatestabilityscore(low_res_masks, self.mask_threshold, self.stability_score_offset)
masks = self.postprocessmasks(
low_res_masks, input_size=image_record['image'].shape[-2:], original_size=image_record['original_size'],
)
masks = masks > self.mask_threshold
outputs.append({
'masks': masks, 'iou_predictions': iou_predictions, 'low_res_logits': low_res_masks,
})
return outputs
'''EdgeSAMPredictor'''
class EdgeSAMPredictor(SAMPredictor):
def __init__(self, sam_cfg=None, use_default_edgesam=False, use_default_edgesam_3x=False, device='cuda', load_ckpt_strict=True):
if sam_cfg is None:
sam_cfg = {
'backbone': {
'type': 'EdgeSAMRepViT', 'structure_type': 'repvit_m1', 'arch': 'm1', 'img_size': 1024, 'upsample_mode': 'bicubic',
},
'prompt': {
'embed_dim': 256, 'image_embedding_size': (1024//16, 1024//16), 'input_image_size': (1024, 1024), 'mask_in_chans': 16,
},
'head': {
'num_multimask_outputs': 3, 'transformer_cfg': {'depth': 2, 'embedding_dim': 256, 'mlp_dim': 2048, 'num_heads': 8},
'transformer_dim': 256, 'iou_head_depth': 3, 'iou_head_hidden_dim': 256,
},
'stability_score_offset': 1.0,
}
if use_default_edgesam:
assert (not use_default_edgesam_3x)
sam_cfg['ckptpath'] = '/~https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_edgesam/edge_sam.pth'
if use_default_edgesam_3x:
assert (not use_default_edgesam)
sam_cfg['ckptpath'] = '/~https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_edgesam/edge_sam_3x.pth'
else:
assert (not use_default_edgesam) and (not use_default_edgesam_3x)
super(EdgeSAMPredictor, self).__init__(
use_default_sam_h=False, use_default_sam_l=False, use_default_sam_b=False, sam_cfg=sam_cfg, device=device, load_ckpt_strict=load_ckpt_strict,
)
self.model.eval()
self.stability_score_offset = sam_cfg.get('stability_score_offset', 1.0)
'''buildsam'''
def buildsam(self, sam_cfg, device):
sam_model = EdgeSAM(sam_cfg, mode='TEST')
sam_model.to(device=device)
sam_model.eval()
return sam_model
'''predict'''
def predict(self, point_coords=None, point_labels=None, box=None, mask_input=None, num_multimask_outputs=3, return_logits=False, use_stability_score=False):
if not self.is_image_set:
raise RuntimeError('an image must be set with .setimage(...) before mask prediction')
# transform input prompts
coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None
if point_coords is not None:
assert point_labels is not None, 'point_labels must be supplied if point_coords is supplied.'
point_coords = self.transform.applycoords(point_coords, self.original_size)
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device)
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :]
if box is not None:
box = self.transform.applyboxes(box, self.original_size)
box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device)
box_torch = box_torch[None, :]
if mask_input is not None:
mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device)
mask_input_torch = mask_input_torch[None, :, :, :]
# predict
masks, iou_predictions, low_res_masks = self.predicttorch(
coords_torch, labels_torch, box_torch, mask_input_torch, num_multimask_outputs, return_logits=return_logits, use_stability_score=use_stability_score,
)
# return result
masks_np = masks[0].detach().cpu().numpy()
iou_predictions_np = iou_predictions[0].detach().cpu().numpy()
low_res_masks_np = low_res_masks[0].detach().cpu().numpy()
return masks_np, iou_predictions_np, low_res_masks_np
'''predicttorch'''
@torch.no_grad()
def predicttorch(self, point_coords, point_labels, boxes=None, mask_input=None, num_multimask_outputs=3, return_logits=False, use_stability_score=True):
if not self.is_image_set:
raise RuntimeError("an image must be set with .setimage(...) before mask prediction.")
if point_coords is not None:
points = (point_coords, point_labels)
else:
points = None
# embed prompts
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
points=points, boxes=boxes, masks=mask_input,
)
# predict masks
low_res_masks, iou_predictions = self.model.mask_decoder(
image_embeddings=self.features, image_pe=self.model.prompt_encoder.getdensepe(), sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings, num_multimask_outputs=num_multimask_outputs,
)
if use_stability_score:
iou_predictions = calculatestabilityscore(
low_res_masks, self.model.mask_threshold, self.stability_score_offset
)
# upscale the masks to the original image resolution
masks = self.model.postprocessmasks(low_res_masks, self.input_size, self.original_size)
if not return_logits:
masks = masks > self.model.mask_threshold
# return
return masks, iou_predictions, low_res_masks
'''EdgeSAMAutomaticMaskGenerator'''
class EdgeSAMAutomaticMaskGenerator(SAMAutomaticMaskGenerator):
def __init__(self, points_per_side=32, points_per_batch=64, pred_iou_thresh=0.88, stability_score_thresh=0.95, stability_score_offset=1.0, device='cuda',
box_nms_thresh=0.7, crop_n_layers=0, crop_nms_thresh=0.7, crop_overlap_ratio=512/1500, crop_n_points_downscale_factor=1, point_grids=None,
min_mask_region_area=0, output_mode='binary_mask', sam_cfg=None, use_default_edgesam=False, use_default_edgesam_3x=False, load_ckpt_strict=True):
user_defined_sam_predictor = EdgeSAMPredictor(sam_cfg=sam_cfg, use_default_edgesam=use_default_edgesam, use_default_edgesam_3x=use_default_edgesam_3x, device=device, load_ckpt_strict=load_ckpt_strict)
super(EdgeSAMAutomaticMaskGenerator, self).__init__(
points_per_side=points_per_side, points_per_batch=points_per_batch, pred_iou_thresh=pred_iou_thresh, stability_score_thresh=stability_score_thresh,
stability_score_offset=stability_score_offset, device=device, box_nms_thresh=box_nms_thresh, crop_n_layers=crop_n_layers, crop_nms_thresh=crop_nms_thresh,
crop_overlap_ratio=crop_overlap_ratio, crop_n_points_downscale_factor=crop_n_points_downscale_factor, point_grids=point_grids, min_mask_region_area=min_mask_region_area,
output_mode=output_mode, sam_cfg=None, use_default_sam_h=False, use_default_sam_l=False, use_default_sam_b=False, user_defined_sam_predictor=user_defined_sam_predictor,
load_ckpt_strict=load_ckpt_strict,
)
'''processbatch'''
def processbatch(self, points, im_size, crop_box, orig_size):
orig_h, orig_w = orig_size
# run model on this batch
transformed_points = self.predictor.transform.applycoords(points, im_size)
in_points = torch.as_tensor(transformed_points, device=self.predictor.device)
in_labels = torch.ones(in_points.shape[0], dtype=torch.int, device=in_points.device)
masks, iou_preds, _ = self.predictor.predicttorch(in_points[:, None, :], in_labels[:, None], num_multimask_outputs=3, return_logits=True)
# serialize predictions and store in MaskData
data = MaskData(
masks=masks.flatten(0, 1),
iou_preds=iou_preds.flatten(0, 1),
points=torch.as_tensor(points.repeat(masks.shape[1], axis=0)),
)
del masks
# filter by predicted IoU
if self.pred_iou_thresh > 0.0:
keep_mask = data['iou_preds'] > self.pred_iou_thresh
data.filter(keep_mask)
# calculate stability score
data['stability_score'] = calculatestabilityscore(
data['masks'], self.predictor.model.mask_threshold, self.stability_score_offset
)
if self.stability_score_thresh > 0.0:
keep_mask = data['stability_score'] >= self.stability_score_thresh
data.filter(keep_mask)
# threshold masks and calculate boxes
data['masks'] = data['masks'] > self.predictor.model.mask_threshold
data['boxes'] = batchedmasktobox(data['masks'])
# filter boxes that touch crop boundaries
keep_mask = ~isboxnearcropedge(data['boxes'], crop_box, [0, 0, orig_w, orig_h])
if not torch.all(keep_mask):
data.filter(keep_mask)
# compress to RLE
data['masks'] = uncropmasks(data['masks'], crop_box, orig_h, orig_w)
data['rles'] = masktorlepytorch(data['masks'])
del data['masks']
# return
return data