-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFind2waveFor_equ6.m
148 lines (141 loc) · 5.93 KB
/
Find2waveFor_equ6.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
Pt_Subs_input = 'D:\yunxia\ML\huigui\data for calibration\input';%存放待处理数据的路径
Nm_Vd_input = [];%存放文件名的结构体
Fd_Subs_input = dir(Pt_Subs_input);%提取所有文件
fL = size(Fd_Subs_input,1);%统计文件个数
for i = 3:fL
Nm_Vd_input{i-2,1} = Fd_Subs_input(i).name;%单独提取出文件名属性
end
Pt_Subs_output = 'D:\yunxia\ML\huigui\data for calibration\output';%存放待处理数据的路径
Nm_Vd_output = [];%存放文件名的结构体
Fd_Subs_output = dir(Pt_Subs_output);%提取所有文件
fL = size(Fd_Subs_output,1);%统计文件个数
for i = 3:fL
Nm_Vd_output{i-2,1} = Fd_Subs_output(i).name;%单独提取出文件名属性
end
for i=1:1:(fL-2)
nm_vd_output = Nm_Vd_output{i,1};
Local_output = strcat('D:\yunxia\ML\huigui\data for calibration\output\',nm_vd_output);
datas_out = xlsread(Local_output);
Fit_out_vector = datas_out(2,:);
Index_noNaN = find(~isnan(Fit_out_vector));%找到非缺失的列
Fit_out_vector = Fit_out_vector(:,Index_noNaN);
nm_vd_input = Nm_Vd_input{i,1};
Local_input = strcat('D:\yunxia\ML\huigui\data for calibration\input\',nm_vd_input);
datas = xlsread(Local_input);
datas = datas(:,2:end);
datas = datas(:,Index_noNaN);
%------------第二轮筛选,剔除datas中含NaN的列
[Index_noNaN_row,Index_noNaN_column] = find(isnan(datas));
datas(:,unique(Index_noNaN_column)) = [];
Fit_out_vector(:,unique(Index_noNaN_column)) = [];
Fit_out_vector = Fit_out_vector';
%----------这里我先试一下波长从350---500的----------------
datas = datas(51:651,:);%只算400-1000
%-----------------------------------------------
Fit_in_vector = zeros(size(datas,2),1);
%R_matrix = zeros(size(datas,1),size(datas,1));
R_matrix = zeros(size(datas,1),1);
wave_selected = 0;
R_max = 0;%这里对相关性随便令个小的值
for i = 1:1:size(datas,1)
i
tic
%for j = i:1:size(datas,1)
%Fit_in_vector = (datas(i,:) - datas(j,:))./(datas(i,:) - datas(k,:));%computing according ()
Fit_in_vector = 1 ./ datas(i,:);
% Fit_in_vector = (datas(i,:) - datas(j,:))./(datas(i,:) + datas(j,:));
Fit_in_vector = Fit_in_vector';
%[R,P] = corrcoef(Fit_in_vector,Fit_out_vector);
[R,P] = corr(Fit_in_vector,Fit_out_vector, 'type' , 'Spearman');
R_matrix(i,1) = R;
if abs(R) > abs(R_max)
R_max = R;
wave_selected = i;
end
%end
toc
end
%上面求出的是一个上三角矩阵,下面把它对称的部分补齐
% for i = 1:size(R_matrix,1)
% for j = 1:i
% R_matrix(i,j,:) = R_matrix(j,i,:);
% end
% end
R_matrix = abs(R_matrix);
wave_selected = wave_selected + 400;
%--------------------------------------------------------------------
savename = strcat('D:\yunxia\ML\huigui\result_equ6\','R_matrix',nm_vd_output);
savename = savename(1:end-5);
save(savename,'R_matrix');
savename = strcat('D:\yunxia\ML\huigui\result_equ6\','R_max',nm_vd_output);
savename = savename(1:end-5);
save(savename,'R_max');
savename = strcat('D:\yunxia\ML\huigui\result_equ6\','wave_selected',nm_vd_output);
savename = savename(1:end-5);
save(savename,'wave_selected');
%------------producing figure------------------
% R_matrix_figure = zeros(2500,2500);
% R_matrix_figure(350:2500,350:2500) = abs(R_matrix);
% % x = [1:size(datas,1)];
% % y = [1:size(datas,1)];
% x = [1:2500];
% y = [1:2500];
% rgb = pcolor(x,y,R_matrix_figure);
% colorbar
% set(rgb, 'LineStyle','none');
% axis([350 2500 350 2500]);
end
% Local_output = 'D:\yunxia\ML\回归\回归\data for calibration\baigurang fan\白骨壤chl.xlsx';
% datas_out = xlsread(Local_output);
% Fit_out_vector = datas_out(2,:);
% Index_noNaN = find(~isnan(Fit_out_vector));%找到非缺失的列
% Fit_out_vector = Fit_out_vector(:,Index_noNaN);
%
%
% Local_input = 'D:\yunxia\ML\回归\回归\data for calibration\baigurang fan\baigurang-fan.mn.xlsx';
% datas = xlsread(Local_input);
% datas = datas(:,2:end);
% datas = datas(:,Index_noNaN);
% %------------第二轮筛选,剔除datas中含NaN的列
% [Index_noNaN_row,Index_noNaN_column] = find(isnan(datas));
% datas(:,unique(Index_noNaN_column)) = [];
% Fit_out_vector(:,unique(Index_noNaN_column)) = [];
%
% Fit_out_vector = Fit_out_vector';
% %----------这里我先试一下波长从350---500的----------------
% %datas = datas(1:150,:);
% %-----------------------------------------------
% Fit_in_vector = zeros(size(datas,2),1);
% R_matrix = zeros(size(datas,1),size(datas,1));
% wave_selected = zeros(2,1);
% R_max = 0;%这里对相关性随便令个小的值
% for i = 1:1:size(datas,1)
% i
% tic
% for j = 1:1:size(datas,1)
% %Fit_in_vector = (datas(i,:) - datas(j,:))./(datas(i,:) - datas(k,:));%computing according ()
% Fit_in_vector = datas(i,:)./datas(j,:);
% Fit_in_vector = Fit_in_vector';
% %[R,P] = corrcoef(Fit_in_vector,Fit_out_vector);
% [R,P] = corr(Fit_in_vector,Fit_out_vector, 'type' , 'Spearman');
% R_matrix(i,j) = R;
% if abs(R) > abs(R_max)
% R_max = R;
% wave_selected = [i;j];
% end
% end
% toc
% end
% save('R_matrix_R1toR2','R_matrix');
% save('R_max_R1toR2','R_max');
% %------------producing figure------------------
% R_matrix_figure = zeros(2500,2500);
% R_matrix_figure(350:2500,350:2500) = abs(R_matrix);
% % x = [1:size(datas,1)];
% % y = [1:size(datas,1)];
% x = [1:2500];
% y = [1:2500];
% rgb = pcolor(x,y,R_matrix_figure);
% colorbar
% set(rgb, 'LineStyle','none');
% axis([350 2500 350 2500]);