-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_facerender_batch.py
125 lines (98 loc) · 4.82 KB
/
generate_facerender_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import numpy as np
from PIL import Image
from skimage import io, img_as_float32, transform
import torch
import scipy.io as scio
def get_facerender_data(coeff_path, pic_path, first_coeff_path, audio_path,
batch_size, camera_yaw_list, camera_pitch_list, camera_roll_list):
semantic_radius = 13
video_name = os.path.splitext(os.path.split(coeff_path)[-1])[0]
txt_path = os.path.splitext(coeff_path)[0]
data={}
img1 = Image.open(pic_path)
source_image = np.array(img1)
source_image = img_as_float32(source_image)
source_image = transform.resize(source_image, (256, 256, 3))
source_image = source_image.transpose((2, 0, 1))
source_image_ts = torch.FloatTensor(source_image).unsqueeze(0)
source_image_ts = source_image_ts.repeat(batch_size, 1, 1, 1)
data['source_image'] = source_image_ts
source_semantics_dict = scio.loadmat(first_coeff_path)
source_semantics = source_semantics_dict['coeff_3dmm'][:1,:70] #1 70
source_semantics_new = transform_semantic_1(source_semantics, semantic_radius)
source_semantics_ts = torch.FloatTensor(source_semantics_new).unsqueeze(0)
source_semantics_ts = source_semantics_ts.repeat(batch_size, 1, 1)
data['source_semantics'] = source_semantics_ts
# target
generated_dict = scio.loadmat(coeff_path)
generated_3dmm = generated_dict['coeff_3dmm']
with open(txt_path+'.txt', 'w') as f:
for coeff in generated_3dmm:
for i in coeff:
f.write(str(i)[:7] + ' '+'\t')
f.write('\n')
target_semantics_list = []
frame_num = generated_3dmm.shape[0]
data['frame_num'] = frame_num
for frame_idx in range(frame_num):
target_semantics = transform_semantic_target(generated_3dmm, frame_idx, semantic_radius)
target_semantics_list.append(target_semantics)
remainder = frame_num%batch_size
if remainder!=0:
for _ in range(batch_size-remainder):
target_semantics_list.append(target_semantics)
target_semantics_np = np.array(target_semantics_list) #frame_num 70 semantic_radius*2+1
target_semantics_np = target_semantics_np.reshape(batch_size, -1, target_semantics_np.shape[-2], target_semantics_np.shape[-1])
data['target_semantics_list'] = torch.FloatTensor(target_semantics_np)
data['video_name'] = video_name
data['audio_path'] = audio_path
yaw_c_seq = gen_camera_pose(camera_yaw_list, frame_num, batch_size)
pitch_c_seq = gen_camera_pose(camera_pitch_list, frame_num, batch_size)
roll_c_seq = gen_camera_pose(camera_roll_list, frame_num, batch_size)
data['yaw_c_seq'] = torch.FloatTensor(yaw_c_seq)
data['pitch_c_seq'] = torch.FloatTensor(pitch_c_seq)
data['roll_c_seq'] = torch.FloatTensor(roll_c_seq)
return data
def transform_semantic_1(semantic, semantic_radius):
semantic_list = [semantic for i in range(0, semantic_radius*2+1)]
coeff_3dmm = np.concatenate(semantic_list, 0)
return coeff_3dmm.transpose(1,0)
def transform_semantic_target(coeff_3dmm, frame_index, semantic_radius):
num_frames = coeff_3dmm.shape[0]
seq = list(range(frame_index- semantic_radius, frame_index+ semantic_radius+1))
index = [ min(max(item, 0), num_frames-1) for item in seq ]
coeff_3dmm_g = coeff_3dmm[index, :]
return coeff_3dmm_g.transpose(1,0)
def gen_camera_pose(camera_degree_list, frame_num, batch_size):
new_degree_list = []
if len(camera_degree_list) == 1:
for _ in range(frame_num):
new_degree_list.append(camera_degree_list[0])
remainder = frame_num%batch_size
if remainder!=0:
for _ in range(batch_size-remainder):
new_degree_list.append(new_degree_list[-1])
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
return new_degree_np
degree_sum = 0.
for i, degree in enumerate(camera_degree_list[1:]):
degree_sum += abs(degree-camera_degree_list[i])
degree_per_frame = degree_sum/(frame_num-1)
for i, degree in enumerate(camera_degree_list[1:]):
degree_last = camera_degree_list[i]
degree_step = degree_per_frame * abs(degree-degree_last)/(degree-degree_last)
new_degree_list = new_degree_list + list(np.arange(degree_last, degree, degree_step))
if len(new_degree_list) > frame_num:
new_degree_list = new_degree_list[:frame_num]
elif len(new_degree_list) < frame_num:
for _ in range(frame_num-len(new_degree_list)):
new_degree_list.append(new_degree_list[-1])
print(len(new_degree_list))
print(frame_num)
remainder = frame_num%batch_size
if remainder!=0:
for _ in range(batch_size-remainder):
new_degree_list.append(new_degree_list[-1])
new_degree_np = np.array(new_degree_list).reshape(batch_size, -1)
return new_degree_np