-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathdemo_vlpart_sam.py
152 lines (124 loc) · 5.5 KB
/
demo_vlpart_sam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
import os
import copy
import numpy as np
import json
import torch
from PIL import Image, ImageDraw, ImageFont
import cv2
import matplotlib.pyplot as plt
import detectron2.data.transforms as T
from vlpart.vlpart import build_vlpart
from segment_anything import build_sam, SamPredictor
from segment_anything.utils.amg import remove_small_regions
def show_predictions_with_masks(scores, boxes, classes, masks, text_prompt):
num_obj = len(scores)
if num_obj == 0:
return
text_prompts = text_prompt.split('.')
ax = plt.gca()
ax.set_autoscale_on(False)
colors = plt.cm.gist_rainbow(np.linspace(0, 1, num_obj))
for obj_ind in range(num_obj):
box = boxes[obj_ind]
score = scores[obj_ind]
name = text_prompts[classes[obj_ind]]
if score < 0.5:
continue
# color_mask = np.random.random((1, 3)).tolist()[0]
color_mask = colors[obj_ind]
m = masks[obj_ind][0]
img = np.ones((m.shape[0], m.shape[1], 3))
for i in range(3):
img[:,:,i] = color_mask[i]
ax.imshow(np.dstack((img, m*0.45)))
x0, y0, w, h = box[0], box[1], box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor=color_mask, facecolor=(0, 0, 0, 0), lw=2))
label = name + ': {:.2}'.format(score)
ax.text(x0, y0, label, color=color_mask, fontsize='large', fontfamily='sans-serif')
if __name__ == "__main__":
parser = argparse.ArgumentParser("Segment-Anything-and-Name-It Demo", add_help=True)
parser.add_argument(
"--vlpart_checkpoint", type=str, default="swinbase_part_0a0000.pth", help="path to checkpoint file"
)
parser.add_argument(
"--sam_checkpoint", type=str, default="sam_vit_h_4b8939.pth", help="path to checkpoint file"
)
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
parser.add_argument("--output_dir", type=str, default="outputs", required=True, help="output directory")
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
parser.add_argument("--device", type=str, default="cuda", help="running on cuda")
args = parser.parse_args()
# cfg
vlpart_checkpoint = args.vlpart_checkpoint
sam_checkpoint = args.sam_checkpoint
image_path = args.input_image
text_prompt = args.text_prompt
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.box_threshold
device = args.device
# make dir
os.makedirs(output_dir, exist_ok=True)
# initialize VLPart
vlpart = build_vlpart(checkpoint=vlpart_checkpoint)
vlpart.to(device=device)
# initialize SAM
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device=device))
# load image
image = cv2.imread(image_path)
original_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# vlpart model inference
preprocess = T.ResizeShortestEdge([800, 800], 1333)
height, width = original_image.shape[:2]
image = preprocess.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
with torch.no_grad():
predictions = vlpart.inference([inputs], text_prompt=text_prompt)[0]
boxes, masks = None, None
filter_scores, filter_boxes, filter_classes = [], [], []
if "instances" in predictions:
instances = predictions['instances'].to('cpu')
boxes = instances.pred_boxes.tensor if instances.has("pred_boxes") else None
scores = instances.scores if instances.has("scores") else None
classes = instances.pred_classes.tolist() if instances.has("pred_classes") else None
num_obj = len(scores)
for obj_ind in range(num_obj):
category_score = scores[obj_ind]
if category_score < 0.7:
continue
filter_scores.append(category_score)
filter_boxes.append(boxes[obj_ind])
filter_classes.append(classes[obj_ind])
if len(filter_boxes) > 0:
# sam model inference
sam_predictor.set_image(original_image)
boxes_filter = torch.stack(filter_boxes)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filter, original_image.shape[:2])
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes.to(device),
multimask_output=False,
)
# remove small disconnected regions and holes
fine_masks = []
for mask in masks.to('cpu').numpy(): # masks: [num_masks, 1, h, w]
fine_masks.append(remove_small_regions(mask[0], 400, mode="holes")[0])
masks = np.stack(fine_masks, axis=0)[:, np.newaxis]
masks = torch.from_numpy(masks)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(original_image)
if len(filter_boxes) > 0:
show_predictions_with_masks(filter_scores, filter_boxes, filter_classes,
masks.to('cpu'), text_prompt)
plt.axis('off')
image_name = image_path.split('/')[-1]
plt.savefig(
os.path.join(output_dir, "vlpart_sam_output_{}".format(image_name)),
bbox_inches="tight", dpi=300, pad_inches=0.0
)