-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPodosporaceae.smk
271 lines (225 loc) · 9.35 KB
/
Podosporaceae.smk
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# -*- snakemake -*-
# from pytools.persistent_dict import PersistentDict
import glob
from Bio.Nexus import Nexus # To read nexus files
from Bio import SeqIO
from Bio import AlignIO
from Bio.Alphabet import IUPAC, Gapped
from Bio.Align import MultipleSeqAlignment
from ete3 import Tree
### Podosporaceae: Making a phylogeny of the taxa related to Podospora anserina
#############################################################################
# In this study we compiled sequence data for a number of molecular markers
# (ITS, LSU, rpb2, and beta-tubulin) to resolve the phylogenetic relationships
# of lineages within the Podosporaceae family, sensu Wang et al. (2019)
# Studies in Mycology 93:155-252.
# The primary objective was to determine the relative position of the model
# species *Podospora anserina* and the type species of the genus, *Podospora
# fimiseda*. Unfortunately, there is a lot of missing data.
#############################################################################
# ===========================================================================
# Sandra Lorena Ament Velasquez
# Johannesson Lab, Evolutionary Biology Center, Uppsala University, Sweden
# 2019/11/26-2020/06/04
# ++++++++++++++++++++++++++++++++++++++++++++++
# Version 2
# -------------------------------------------------
## Input data
masternex = config["masternex"]
allmarkersname = config["allmarkersname"]
orders = config["orders"]
# Filtering
minfrac = float(config["minfrac"])
minlen = int(config["minlen"])
# Scripts
sitewise_analyzer = config["sitewise_analyzer"]
genewise_analyzer = config["genewise_analyzer"]
plotShen = config["plotShen"]
## Master lists
outgroup = config["outgroup"]
testmonophyly = config["testmonophyly"]
# -------------------------------------------------
rule all:
input:
# This temporal file I don't really need but it's useful to use the checkpoints to produce individual topologies
"tmp/singlemarkers.tre",
# Shen metrics
"results/ShenMetrics.pdf",
checkpoint nexus2fastas:
""" Read Nexus into individual markers """
input:
aln = masternex
output:
directory("singlemarkers")
run:
shell("mkdir -p singlemarkers") # The "output"
# Read nexus file with Bio.Nexus
master = Nexus.Nexus() # Create a nexus object
master.read(input.aln) # update
markers = list(master.charsets.keys()) # Get list of partitions
print(markers)
for marker in markers:
# Get positions included in this partition
partitioncols = master.charsets[marker]
# Start an empty msa object
newalign = MultipleSeqAlignment([], Gapped(IUPAC.unambiguous_dna, "-"))
# For each taxon, get those columns:
for taxon in master.taxlabels:
record = master.matrix[taxon] # Get sequence of this taxon
newseq = "" # Start an empty new sequence
for column in partitioncols:
newseq += record[column]
newalign.add_sequence(taxon, newseq) # Add the sliced sequenced to the new msa
# Write a fasta file for each marker in the working directory
output_handle = open("singlemarkers/" + marker + ".fas", "w")
SeqIO.write(newalign, output_handle, "fasta")
# ----------- Single markers
rule minlen:
""" Remove sequences with too much missing data """
input:
fasta = "singlemarkers/{marker}.fas",
output:
"cleanmarkers/{marker}" + f".min{minfrac}-{minlen}.fa"
params:
threads = 1,
run:
# Make a new file
output_handle = open(output[0], "w")
for seq_record in SeqIO.parse(input.fasta, "fasta"):
total = len(seq_record)
nogaps = len(seq_record.seq.ungap("-"))
fraction = nogaps/total
if (fraction >= minfrac) or (nogaps >= minlen):
SeqIO.write(seq_record, output_handle, "fasta")
output_handle.close()
rule IQTree_marker:
""" Make a tree of the marker """
input:
alignment = "cleanmarkers/{marker}" + f".min{minfrac}-{minlen}.fa"
output:
"iqtree_markers/{marker}" + f".min{minfrac}-{minlen}.treefile",
"iqtree_markers/{marker}" + f".min{minfrac}-{minlen}.boottrees",
params:
bootstraps = 100,
threads = 4
shell:
"iqtree -s {input.alignment} -m MFP -seed 1234 -b {params.bootstraps} -nt {params.threads} -pre iqtree_markers/{wildcards.marker}.min{minfrac}-{minlen}"
# -b <#replicates> Bootstrap + ML tree + consensus tree (>=100)
# -bb Ultrafast bootstraps (UFBoots)
# -bnni to reduce the risk of overestimating branch supports with UFBoot due to severe model violations.
# --- Put results in a convenient place ---
rule trees_to_results:
""" Copy the single marker trees into a results folder for convenience """
input:
"iqtree_markers/{marker}" + f".min{minfrac}-{minlen}.treefile",
output:
"results/{marker}" + f".min{minfrac}-{minlen}.tre",
shell:
"cp {input} {output}"
def aggregate_results(wildcards):
# From Dima's tutorial
# https://evodify.com/snakemake-checkpoint-tutorial/
'''
Aggregate the file names of the random number of files
generated at the paralogs step
'''
checkpoint_output = checkpoints.nexus2fastas.get(**wildcards).output[0] # The folder's name
return expand("results/{marker}" + f".min{minfrac}-{minlen}.tre",
marker=glob_wildcards(os.path.join(checkpoint_output, '{marker}.fas')).marker)
rule aggregate_trees:
""" Collect all trees in a single file """
# With this rule I trigger the formation of all other checkpoint files
input:
aggregate_results,
output:
"tmp/singlemarkers.tre" # I actually don't need this, but it allows me to get all the trees
shell:
"cat {input} > {output}"
## ------ Analysis of Shen et al (2017) statistics ------
def roottree(tree, outgroup, f = 0):
t = Tree(tree, format = f)
if len(outgroup) == 1:
t.set_outgroup(outgroup[0])
else:
ancestor = t.get_common_ancestor(outgroup)
t.set_outgroup(ancestor)
return(t)
def list2newick(clade): # I didn't use it in the end
cladestring = '(' + ', '.join(clade) + ')'
return cladestring
rule make_constrain:
""" Produce contrasting topologies to evaluate the T1 = (A,B) vs T2 = (A,C) dispute """
input:
tree = "results/{marker}" + f".min{minfrac}-{minlen}.tre"
output:
constrain = "ShenMetrics/{marker}" + f".min{minfrac}-{minlen}-constrain.tre"
run:
print(input.tree)
# What outgroup taxa survived?
t = Tree(input.tree)
leaves = [node.name for node in t.iter_leaves()] # same as [leaf for leaf in t.iter_leaf_names()]
# Make a list with only the outgroups that survived the filtering
survoutgroup = [taxon for taxon in outgroup if taxon in leaves]
# Find what tree is this, T1 or T2?
t = roottree(input.tree, survoutgroup) # Root first
t.prune(testmonophyly) # remove all taxa that are not relevant for the test
print(t)
# Write the tree in the topology that already has
if t.check_monophyly(values=[testmonophyly[0], testmonophyly[1]], target_attr="name")[0]: # AB
constrain = Tree(f"(({testmonophyly[0]}, {testmonophyly[2]})), ({testmonophyly[1]}), {list2newick(survoutgroup)};", format=1) # constrain tree is AC
elif t.check_monophyly(values=[testmonophyly[0], testmonophyly[2]], target_attr="name")[0]: # AC
constrain = Tree(f"(({testmonophyly[0]}, {testmonophyly[1]})), ({testmonophyly[2]}), {list2newick(survoutgroup)};", format=1) # constrain tree is AB
elif t.check_monophyly(values=[testmonophyly[1], testmonophyly[2]], target_attr="name")[0]: # BC:
constrain = Tree(f"(({testmonophyly[0]}, {testmonophyly[1]})), ({testmonophyly[2]}), {list2newick(survoutgroup)};", format=1) # constrain tree is AB
constrain.write(format = 9, outfile = output.constrain)
rule IQTREE_constrained_single:
""" Make an alternative tree with the topological constrain """
input:
alignment = "cleanmarkers/{marker}" + f".min{minfrac}-{minlen}.fa",
tree = "ShenMetrics/{marker}" + f".min{minfrac}-{minlen}-constrain.tre"
output:
"ShenMetrics/{marker}" + f".min{minfrac}-{minlen}-constrained.treefile"
params:
bootstraps = 100,
threads = 3
shell:
"iqtree -s {input.alignment} -m MFP -nt {params.threads} -g {input.tree} -pre ShenMetrics/{wildcards.marker}.min{minfrac}-{minlen}-constrained"
rule RAxML_SLS:
""" Use RAxML to calculate the site-wise log-likelihood score """
input:
alignment = "cleanmarkers/{marker}" + f".min{minfrac}-{minlen}.fa",
T1 = "results/{marker}" + f".min{minfrac}-{minlen}.tre",
T2 = "ShenMetrics/{marker}" + f".min{minfrac}-{minlen}-constrained.treefile"
output:
trees = "ShenMetrics/T1_T2_{marker}.tre",
sls = "ShenMetrics/RAxML_perSiteLLs.{marker}_podospora_site_lk"
shell:
"cat {input.T1} {input.T2} > {output.trees}; "
"cd ShenMetrics; "
"raxmlHPC -f G -s ../{input.alignment} -m GTRGAMMA -z T1_T2_{wildcards.marker}.tre -n {wildcards.marker}_podospora_site_lk"
def get_main_alignment(wildcards):
""" Get name of relevant alignment for the Shen et al analysis """
checkpoint_output = checkpoints.nexus2fastas.get(**wildcards).output[0] # I don't really need this but it activates the checkpoints
return expand("ShenMetrics/RAxML_perSiteLLs.{marker}_podospora_site_lk",
marker=allmarkersname)
rule Shen2017:
""" Run the scripts from Shen et al 2017 """
input:
sls = get_main_alignment,
orders = orders,
output:
"ShenMetrics/podospora_sitwise_statistics.txt",
"ShenMetrics/podospora_genewise_lnL.txt",
shell:
"cp {input.orders} ShenMetrics/; "
"cd ShenMetrics; "
"perl ../{sitewise_analyzer} && perl ../{genewise_analyzer}"
rule plotShen2017:
""" Plot SLS and dGLS """
input:
sitwise = "ShenMetrics/podospora_sitwise_statistics.txt",
genewise = "ShenMetrics/podospora_genewise_lnL.txt",
output:
"results/ShenMetrics.pdf"
script:
plotShen