-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcamera.py
129 lines (113 loc) · 5.43 KB
/
camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
* This file is part of PYSLAM
*
* Copyright (C) 2016-present Luigi Freda <luigi dot freda at gmail dot com>
*
* PYSLAM is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* PYSLAM is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with PYSLAM. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
import cv2
#import g2o
from utils_geom import add_ones
class Camera:
def __init__(self, width, height, fx, fy, cx, cy, D, fps = 1): # D = [k1, k2, p1, p2, k3]
self.width = width
self.height = height
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
self.D = np.array(D,dtype=np.float32) # np.array([k1, k2, p1, p2, k3]) distortion coefficients
self.fps = fps
self.is_distorted = np.linalg.norm(self.D) > 1e-10
self.initialized = False
class PinholeCamera(Camera):
def __init__(self, width, height, fx, fy, cx, cy, D, fps = 1):
super().__init__(width, height, fx, fy, cx, cy, D, fps)
self.K = np.array([[fx, 0,cx],
[ 0,fy,cy],
[ 0, 0, 1]])
# skew for endoSLAM
# self.K = np.array([[fx, 0,cx],
# [ 5.6242,fy,cy],
# [ 0, 0, 1]])
self.Kinv = np.array([[1/fx, 0,-cx/fx],
[ 0, 1/fy,-cy/fy],
[ 0, 0, 1]])
self.u_min, self.u_max = 0, self.width
self.v_min, self.v_max = 0, self.height
self.init()
def init(self):
if not self.initialized:
self.initialized = True
self.undistort_image_bounds()
# project a 3D point or an array of 3D points (w.r.t. camera frame), of shape [Nx3]
# out: Nx2 image points, [Nx1] array of map point depths
def project(self, xcs):
#u = self.fx * xc[0]/xc[2] + self.cx
#v = self.fy * xc[1]/xc[2] + self.cy
projs = self.K @ xcs.T
zs = projs[-1]
projs = projs[:2]/ zs
return projs.T, zs
# unproject 2D point uv (pixels on image plane) on
def unproject(self, uv):
x = (uv[0] - self.cx)/self.fx
y = (uv[1] - self.cy)/self.fy
return x,y
# in: uvs [Nx2]
# out: xcs array [Nx3] of normalized coordinates
def unproject_points(self, uvs):
return np.dot(self.Kinv, add_ones(uvs).T).T[:, 0:2]
# in: uvs [Nx2]
# out: uvs_undistorted array [Nx2] of undistorted coordinates
def undistort_points(self, uvs):
if self.is_distorted:
#uvs_undistorted = cv2.undistortPoints(np.expand_dims(uvs, axis=1), self.K, self.D, None, self.K) # => Error: while undistorting the points error: (-215:Assertion failed) src.isContinuous()
uvs_contiguous = np.ascontiguousarray(uvs[:, :2]).reshape((uvs.shape[0], 1, 2))
uvs_undistorted = cv2.undistortPoints(uvs_contiguous, self.K, self.D, None, self.K)
return uvs_undistorted.ravel().reshape(uvs_undistorted.shape[0], 2)
else:
return uvs
# update image bounds
def undistort_image_bounds(self):
uv_bounds = np.array([[self.u_min, self.v_min],
[self.u_min, self.v_max],
[self.u_max, self.v_min],
[self.u_max, self.v_max]], dtype=np.float32).reshape(4,2)
#print('uv_bounds: ', uv_bounds)
if self.is_distorted:
uv_bounds_undistorted = cv2.undistortPoints(np.expand_dims(uv_bounds, axis=1), self.K, self.D, None, self.K)
uv_bounds_undistorted = uv_bounds_undistorted.ravel().reshape(uv_bounds_undistorted.shape[0], 2)
else:
uv_bounds_undistorted = uv_bounds
#print('uv_bounds_undistorted: ', uv_bounds_undistorted)
self.u_min = min(uv_bounds_undistorted[0][0],uv_bounds_undistorted[1][0])
self.u_max = max(uv_bounds_undistorted[2][0],uv_bounds_undistorted[3][0])
self.v_min = min(uv_bounds_undistorted[0][1],uv_bounds_undistorted[2][1])
self.v_max = max(uv_bounds_undistorted[1][1],uv_bounds_undistorted[3][1])
# print('camera u_min: ', self.u_min)
# print('camera u_max: ', self.u_max)
# print('camera v_min: ', self.v_min)
# print('camera v_max: ', self.v_max)
def is_in_image(self, uv, z):
return (uv[0] > self.u_min) & (uv[0] < self.u_max) & \
(uv[1] > self.v_min) & (uv[1] < self.v_max) & \
(z > 0)
# input: [Nx2] array of uvs, [Nx1] of zs
# output: [Nx1] array of visibility flags
def are_in_image(self, uvs, zs):
return (uvs[:, 0] > self.u_min) & (uvs[:, 0] < self.u_max) & \
(uvs[:, 1] > self.v_min) & (uvs[:, 1] < self.v_max) & \
(zs > 0 )