-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
63 lines (45 loc) · 2.24 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# DataTidyGelaDURT
<!-- badges: start -->
<!-- badges: end -->
The goal of DataTidyGelaDURT is to provide easy, documented access to the datasets analysed in [Effects of BCG vaccination on donor unrestricted T cells in two prospective cohort studies (Gela, 2022)](https://doi.org/10.1016/j.ebiom.2022.103839). The companion project, [`ReportGelaDURT`](/~https://github.com/SATVILab/ReportGelaDURT), analyses the data and produces the paper figures.
Due to privacy concerns, raw data are not publicly available. Please email Thomas Scriba at `thomas.scriba@uct.ac.za` should you require access.
Note that the package has been updated since the paper was published, and the version at the time of publication is available [as a GitHub release](/~https://github.com/SATVILab/DataTidyGelaDURT/releases/tag/v1.0.0).
## Installation
To install the latest version of `DataTidyGelaDURT` from [GitHub](/~https://github.com/), run the following:
``` r
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
remotes::install_github("SATVILab/DataTidyGelaDURT")
```
To install the version of `DataTidyGelaDURT` as when submitted for final publication, run the following:
``` r
if (!requireNamespace("remotes", quietly = TRUE)) install.packages("remotes")
remotes::install_github("SATVILab/DataTidyGelaDURT@v1.0.0")
```
## Data sets
The following datasets are available:
```{r , results = "asis", echo = FALSE}
data_tbl <- tibble::tibble(
Dataset = c(
"data_tidy_clin_adult", "data_tidy_clin_infant", "data_tidy_freq",
"data_tidy_freq_ifng", "data_tidy_hladr_adult",
"data_tidy_hladr_infant", "data_tidy_mem"
)
)
pander::pandoc.table(data_tbl)
```
Use `?DataTidyGelaDURT::<dataset_name>` to see documentation for each dataset.
CSV versions of the data are available inside `inst/extdata/`. Once installed, the following R code will give the path to the CSV files: `system.file("extdata", package = "DataTidyGelaDURT")`.
## Project structure
The data are processed using `Rmd` files inside `data-raw/`.