This repository has been archived by the owner on May 15, 2024. It is now read-only.
generated from SAP/repository-template
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsprk11.f
330 lines (273 loc) · 8.44 KB
/
sprk11.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
C SPDX-FileCopyrightText: 2023 SAP SE
C
C SPDX-License-Identifier: Apache-2.0
C
SUBROUTINE SPRK11
$( MSPAR , MTREES, MSIFA , SM , IFLAG , XK11 , K11 , RINDEX)
IMPLICIT NONE
INTEGER
$ MSPAR(*), MTREES(*), MSIFA(*), IFLAG, XK11(*), RINDEX(*)
DOUBLE PRECISION
$ SM(*), K11(*)
* --- ------------------------------------------------------------------
*
* Purpose
* -------
*
* --- To extract the lower triangular matrix associated with the
* internal dofs from SM. If this is done prior to factorization,
* but after assembly the results is the coefficient matrix A11.
*
* Created : Jul. 01, 1998 (acd)
* Revisions : Feb. 27, 2003 (kmo)
* Get pointers from MSPAR instead of recalculating them.
* Apr. 11, 2011 (kmo)
* Removed some unused local variables and argument LPU.
* Added subroutine SPRKA3.
*
* MSPAR - INTEGER(*)
* Entry : As output from SPRSMB.
* Exit : Not changed.
* MTREES - INTEGER(NTREES)
* Entry : As output from SPRSMB.
* Exit : Not changed.
* MSIFA - INTEGER(NMSIFA)
* Entry : As output from SPRSMB.
* Exit : Not changed.
* SM - DOUBLE PRECISION(NSM)
* Entry : As output from SPRFC1.
* Exit : Not changed.
* IFLAG - INTEGER
* Entry : Option for storage of K11.
* = 0 : Compressed storage.
* = 2 : Full storage, symmetric rectangular matrix
* XK11 - INTEGER(SZER11)
* Entry : Not defined.
* Exit : The index information of K11.
* SZER11 = MSPAR(60)
* K11 - DOUBLE PRECISION(SZEL11)
* Entry : Not defined.
* Exit : The matrix associated with the internal dofs, extracted
* from the substructure matrix. The matrix is stored on
* compressed form.
* SZEL11 = MSPAR(59)
*
* Working arrays
* --------------
*
* RINDEX - INTEGER(NEQ)
* Entry : Not defined.
* Exit : Need not be saved. Contains for each equation in the
* system that is internal the row index, ie the equation.
*
* --- ------------------------------------------------------------------
LOGICAL
$ LIPERM
INTEGER
$ NEQ , NEQ1 , NSUPER, NOFSUB
INTEGER
$ XLINDX, PERE2I, LINDX , XLNZ , XSUPER, SUPSUP
INTEGER
$ NSUP11, SUPRET, XSUP11, XSUB11, XLNZ11, SUB11
* --- MSPAR
NEQ = MSPAR( 8)
NSUPER = MSPAR(11)
NOFSUB = MSPAR(15)
SUPRET = MSPAR(53)
NEQ1 = NEQ - MSPAR(54)
LIPERM = MSPAR(58) .GT. 0
* --- MTREES
XSUPER = MSPAR(45)
XLINDX = MSPAR(46)
SUPSUP = XLINDX + NSUPER + 1
* --- MSIFA
PERE2I = 1 + NEQ
LINDX = MSPAR(47)
XLNZ = MSPAR(48)
* --- NSUP11 - the number of internal supernodes.
NSUP11 = NSUPER - SUPRET
* --- XK11
XSUP11 = 1
XSUB11 = XSUP11 + NSUP11 + 1
XLNZ11 = XSUB11 + NSUP11 + 1
SUB11 = XLNZ11 + NSUP11 + 1
* --- Extract K11 (XK11).
IF ( IFLAG.EQ.0 ) THEN
CALL SPRKA1
$ ( NEQ,NSUPER,MTREES(XSUPER),MTREES(XLINDX),MTREES(SUPSUP),
$ MSIFA(LINDX),MSIFA(XLNZ),NSUP11,XK11(XSUP11),XK11(XSUB11),
$ XK11(XLNZ11),XK11(SUB11),SM,K11,RINDEX )
ELSE
CALL SPRKA3
$ ( NEQ,NEQ1,NSUPER,MTREES(XSUPER),MTREES(XLINDX),MTREES(SUPSUP),
$ MSIFA(LINDX),MSIFA(XLNZ),SM,K11,RINDEX,LIPERM,MSIFA(PERE2I) )
ENDIF
RETURN
END
SUBROUTINE SPRKA1
$( NEQ , NSUPER, XSUPER, XLINDX, SUPSUP, LINDX , XLNZ , NSUP11,
$ XSUP11, XSUB11, XLNZ11, SUB11 , SM , K11 , RINDEX )
IMPLICIT NONE
INTEGER
$ NEQ, NSUPER,
$ XSUPER(NSUPER+1), XLINDX(NSUPER+1), SUPSUP(NSUPER), LINDX(*),
$ XLNZ(NSUPER+1), RINDEX(NEQ)
INTEGER
$ NSUP11, XSUP11(NSUP11+1), XSUB11(NSUP11+1), XLNZ11(NSUP11+1),
$ SUB11(*)
DOUBLE PRECISION
$ SM(*), K11(*)
* --- ------------------------------------------------------------------
INTEGER
$ I,IPK11,IPSM,IPXK11,IPXSUP,ISTRT,ISTOP,J,JS,JSTRT,JSTOP,
$ ROWIND,SUP11T
* --- ------------------------------------------------------------------
* --- Compute RINDEX.
DO I = 1, NEQ
RINDEX(I) = 0
END DO
DO JS = 1, NSUPER
IF ( SUPSUP(JS).LE.0 ) THEN
ISTRT = XSUPER(JS)
ISTOP = XSUPER(JS+1)-1
DO I = ISTRT, ISTOP
RINDEX(I) = I
END DO
ENDIF
END DO
ROWIND = 0
DO I = 1, NEQ
IF ( RINDEX(I).GT.0 ) THEN
ROWIND = ROWIND + 1
RINDEX(I) = ROWIND
ENDIF
END DO
* --- Start NSUP11
SUP11T = 0
* --- Start XSUP11
IPXSUP = 1
XSUP11(SUP11T+1) = IPXSUP
* --- Start XLNZ11
IPK11 = 1
XLNZ11(SUP11T+1) = IPK11
* --- Start XSUB11
IPXK11 = 1
XSUB11(SUP11T+1) = IPXK11
DO JS = 1, NSUPER
IF ( SUPSUP(JS).LE.0 ) THEN
ISTRT = XLINDX(JS)
ISTOP = XLINDX(JS+1)-1
* --------- Insert the row index set for the current supernode.
DO I = 1, ISTRT, ISTOP
ROWIND = LINDX(I)
IF ( RINDEX(ROWIND).GT.0 ) THEN
SUB11(IPXK11) = RINDEX(ROWIND)
IPXK11 = IPXK11 + 1
ENDIF
END DO
IPSM = XLNZ(JS)
JSTRT = XSUPER(JS)
JSTOP = XSUPER(JS+1)-1
* --------- Insert the coefficient set for the current supernode.
DO J = JSTRT, JSTOP
DO I = ISTRT, ISTOP
ROWIND = LINDX(I)
IF ( RINDEX(ROWIND).GT.0 ) THEN
K11(IPK11) = SM(IPSM)
IPK11 = IPK11 + 1
ENDIF
IPSM = IPSM + 1
END DO
ISTRT = ISTRT + 1
IPXSUP = IPXSUP + 1
END DO
* --------- Update the number of supernodes in K11.
SUP11T = SUP11T + 1
* --------- Update XSUP11, XSUB11 and XLNZ11
XSUP11(SUP11T+1) = IPXSUP
XSUB11(SUP11T+1) = IPXK11
XLNZ11(SUP11T+1) = IPK11
ENDIF
END DO
RETURN
END
SUBROUTINE SPRKA3
$( NEQ , NEQ1 , NSUPER, XSUPER, XLINDX, SUPSUP, LINDX , XLNZ ,
$ SM , K11 , RINDEX, LIPERM, PERE2I )
IMPLICIT NONE
LOGICAL
$ LIPERM
INTEGER
$ NEQ, NEQ1, NSUPER,
$ XSUPER(NSUPER+1), XLINDX(NSUPER+1), SUPSUP(NSUPER), LINDX(*),
$ XLNZ(NSUPER+1), RINDEX(NEQ), PERE2I(NEQ)
DOUBLE PRECISION
$ SM(*), K11(NEQ1,NEQ1)
* --- ------------------------------------------------------------------
INTEGER
$ I,IPSM,ISTRT,ISTOP,J,JS,JSTRT,JSTOP,NCOL,NROW
DOUBLE PRECISION
$ ZERO
PARAMETER
$( ZERO = 0.0D+00 )
* --- ------------------------------------------------------------------
DO J = 1, NEQ1
DO I = 1, NEQ1
K11(I,J) = ZERO
END DO
END DO
* --- Compute RINDEX
DO I = 1, NEQ
RINDEX(I) = 0
END DO
DO JS = 1, NSUPER
IF ( SUPSUP(JS).LE.0 ) THEN
ISTRT = XLINDX(JS)
ISTOP = XLINDX(JS+1)-1
DO I = ISTRT, ISTOP
NROW = LINDX(I)
RINDEX(NROW) = NROW
END DO
ENDIF
END DO
NROW = 0
DO J = 1, NEQ
IF ( LIPERM ) THEN
I = PERE2I(J)
ELSE
I = J
END IF
IF ( RINDEX(I).GT.0 ) THEN
NROW = NROW + 1
RINDEX(I) = NROW
ENDIF
END DO
DO JS = 1, NSUPER
IF ( SUPSUP(JS).LE.0 ) THEN
ISTRT = XLINDX(JS)+1
ISTOP = XLINDX(JS+1)-1
JSTRT = XSUPER(JS)
JSTOP = XSUPER(JS+1)-1
* --------- Insert the coefficient set for current supernode
IPSM = XLNZ(JS)
DO J = JSTRT, JSTOP
NCOL = RINDEX(J)
IF ( NCOL.GT.0 .AND. NCOL.LE.NEQ1 ) THEN
K11(NCOL,NCOL) = SM(IPSM)
END IF
IPSM = IPSM + 1
DO I = ISTRT, ISTOP
NROW = RINDEX(LINDX(I))
IF ( NCOL.GT.0 .AND. NCOL.LE.NEQ1 .AND.
$ NROW.GT.0 .AND. NROW.LE.NEQ1 ) THEN
K11(NROW,NCOL) = SM(IPSM)
K11(NCOL,NROW) = SM(IPSM)
ENDIF
IPSM = IPSM + 1
END DO
ISTRT = ISTRT + 1
END DO
ENDIF
END DO
RETURN
END