This repository has been archived by the owner on May 15, 2024. It is now read-only.
generated from SAP/repository-template
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathspradm.f
1005 lines (917 loc) · 35 KB
/
spradm.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C SPDX-FileCopyrightText: 2023 SAP SE
C
C SPDX-License-Identifier: Apache-2.0
C
SUBROUTINE SPRADM ( EM , TTCC ,
$ MPAR , MSPAR ,
$ MADOF , MEQN ,
$ MPMNPC, MMNPC ,
$ MPMCEQ, MMCEQ ,
$ MSICA , MTREES,
$ MSIFA , MDOFNC,
$ SM , SV ,
$ IWORK , IEL , NEDOF , LPU , NSV , IERR )
C
C **********************************************************************
C
C S A M LIBRARY ROUTINE : SPRADM GROUP 9 / PUBLIC
C
C T A S K : To assemble an element matrix (EM) into the system
C matrix (SM) and/or vector (SV).
C
C MPAR : INTEGER(NMPAR)
C Entry : Matrix of parameters.
C Exit : Unchanged.
C MADOF : INTEGER(NANOD+1)
C Entry : Matrix of accumulated degrees of freedom.
C Exit : Unchanged.
C MPMNPC : INTEGER(NEL+1)
C Entry : Matrix of pointers to MNPC.
C Exit : Unchanged.
C MMNPC : INTEGER(NMMNPC)
C Entry : Matrix of nodal point correspondence for all elements.
C Exit : Unchanged.
C
C ROUTINES CALLED/REFERENCED : SPRASM,SPRER1,SPREEQ (SAM-9)
C
C PROGRAMMED BY : Kolbein Bell
C DATE/VERSION : 94-02-18 / 1.0
* 98-08-24 / 1.1 A.C.Damhaug
* MSPAR(50) -> MSPAR(*), and
* added superelement option.
C 03-03-03 / 2.0 K.M.Okstad
C Added lumped matrix option. The
C diagonal element matrix is then
C added DOF by DOF by calls to
C SPRASM. Added call to ELMEQ2
C and some consistency checking.
C 03-08-01 / 2.1 K.M.Okstad
C Added call to ELMEQ instead of
C ELMEQ2 when MPAR(18) .EQ. 0.
C
C **********************************************************************
C
IMPLICIT NONE
C
INTEGER IEL,IERR,LPU,NEDOF,NSV
INTEGER IWORK(*)
INTEGER MADOF(*) ,MDOFNC(*),MEQN(*) ,MMCEQ(*) ,
$ MMNPC(*) ,MPAR(50) ,MPMCEQ(*),MPMNPC(*),
$ MSICA(*) ,MSIFA(*) ,MSPAR(*) ,MTREES(*)
C
DOUBLE PRECISION EM(*) ,SM(*) ,SV(*) ,TTCC(*)
C
C ! local variables
C
INTEGER NCEQ,NMMCEQ
INTEGER NDOF,NEL,NEQ,NIWORK,NOFSUB,NSUPER,NZEROL
INTEGER SPRCON,SPRNOD
INTEGER ELNOD,LINDX,NODES,XELNOD,XLINDX,XLNZ
INTEGER XNODES,XSUPER
INTEGER I,IDOF,IPNOD,NELDOF,NENOD,NESLV,NEPRD,NNDOF
C
C ----------------------------------------------------------------------
C
IF ( IEL .LT. 1 .OR. IEL .GT. MPAR(2) ) THEN
IERR = -1
CALL SPRER1 (22,'SPRADM',IEL,MPAR(2),0,LPU,IERR)
RETURN
ELSE IF ( ABS(NSV) .GT. 1 .AND. ABS(NSV) .NE. MPAR(9) ) THEN
IERR = -2
CALL SPRER1 (57,'SPRADM',IEL,NSV,MPAR(9),LPU,IERR)
RETURN
ELSE IF ( MSPAR(51) .EQ. 1 .AND. MSPAR(52) .EQ. 1 ) THEN
IERR = -3
CALL SPRER1 (23,'SPRADM',IEL,MSPAR(51),MSPAR(52),LPU,IERR)
RETURN
ENDIF
IPNOD = MPMNPC(IEL)
NENOD = MPMNPC(IEL+1) - IPNOD
IF ( MPAR(18) .EQ. 0 ) THEN
C Assumes that NNDOF = MADOF(I+I) - MADOF(I) for node I
NNDOF = MPAR(3)
ELSE
C Assumes that NEDOF = NNDOF*NENOD, NNDOF is constant
NNDOF = NEDOF/NENOD
ENDIF
CALL SPREEQ (MADOF,MMNPC(IPNOD),MPMCEQ,MEQN,NENOD,NNDOF,
$ IWORK,NELDOF,NESLV,NEPRD)
IF ( NELDOF .NE. NEDOF ) THEN
IERR = -3
CALL SPRER1 (22,'SPRADM',IEL,NELDOF,NEDOF,LPU,IERR)
RETURN
ENDIF
C ! extract parameters
NEL = MPAR(2)
NDOF = MPAR(3)
NCEQ = MPAR(7)
NEQ = MPAR(11)
NMMCEQ = MPAR(16)
NIWORK = MSPAR(39)
NOFSUB = MSPAR(15)
NSUPER = MSPAR(11)
NZEROL = MSPAR(16)
SPRNOD = MSPAR(6)
SPRCON = MSPAR(7)
C ! extract pointers
XELNOD = MSPAR(41)
ELNOD = MSPAR(42)
XNODES = MSPAR(43)
NODES = MSPAR(44)
XSUPER = MSPAR(45)
XLINDX = MSPAR(46)
LINDX = MSPAR(47)
XLNZ = MSPAR(48)
C
C ! assemble EM
C
IF ( MSPAR(51) .EQ. 1 ) THEN
C ! diagonal matrix
IF ( MPAR(18) .EQ. 0 ) THEN
IERR = -3
CALL SPRER1 (21,'SPRADM',IEL,MSPAR(51),MPAR(18),LPU,IERR)
RETURN
ENDIF
DO 100 I = 1, NEDOF
IDOF = MADOF(MMNPC(IPNOD+(I-1)/NNDOF)) + MOD(I-1,NNDOF)
CALL SPRASM (EM(I) , TTCC , IWORK(I),MEQN , MMCEQ , MPMCEQ,
$ IDOF , NCEQ , NDOF , 1 , NDOF , NESLV ,
$ NEPRD , NEQ , NMMCEQ, NSV , MSICA (XELNOD),
$ MSICA (ELNOD) , MSICA (XNODES), MSICA (NODES) ,
$ MTREES(XSUPER), MTREES(XLINDX), MSIFA (LINDX) ,
$ MSIFA (XLNZ) , MDOFNC(1) , MDOFNC(NEQ+1) ,
$ NSUPER, SPRNOD, SPRCON, NOFSUB, NZEROL,
$ IWORK(1+NEDOF), NIWORK-NEDOF , SM(NEQ+1), SV ,
$ LPU , IERR )
100 CONTINUE
ELSE
CALL SPRASM (EM , TTCC , IWORK , MEQN , MMCEQ , MPMCEQ,
$ IEL , NCEQ , NDOF , NEDOF , NEL , NESLV ,
$ NEPRD , NEQ , NMMCEQ, NSV , MSICA (XELNOD),
$ MSICA (ELNOD) , MSICA (XNODES), MSICA (NODES) ,
$ MTREES(XSUPER), MTREES(XLINDX), MSIFA (LINDX) ,
$ MSIFA (XLNZ) , MDOFNC(1) , MDOFNC(NEQ+1) ,
$ NSUPER, SPRNOD, SPRCON, NOFSUB, NZEROL,
$ IWORK(1+NEDOF), NIWORK-NEDOF , SM(NEQ+1), SV ,
$ LPU , IERR )
ENDIF
C
RETURN
END
SUBROUTINE SPREEQ (MADOF,MNPC,MPMCEQ,MEQN,NENOD,NNDOF,
+ MEEN,NEDOF,NESLV,NEPRD)
C
C **********************************************************************
C
C S A M LIBRARY ROUTINE : SPREEQ GROUP 9 / PRIVATE
C
C T A S K : TO FIND MEEN ('MATRIX OF' ELEMNET EQUATION NUMBERS),
C NEDOF (NO. OF ELEMENT D O F S), NESLV (NO. OF ELEMENT SLAVE
C D O F S) AND NEPRD (NO. OF ELEMENT PRESCRIBED D O F S) FOR AN
C ELEMENT WHOSE MNPC(NENOD) IS INPUT
C
C This is the s p a r s e version of ELMEQ/ELMEQ2.
C
C ROUTINES CALLED/REFERENCED : NONE
C
C PROGRAMMED BY : KOLBEIN BELL
C DATE/VERSION : 84-03-25 / 1.0
C 02-07-11 / 2.0 K.M.Okstad
C
C **********************************************************************
C
IMPLICIT NONE
C
INTEGER NEDOF,NENOD,NNDOF,NEPRD,NESLV
INTEGER MADOF(*),MEEN(*),MEQN(*),MNPC(NENOD),MPMCEQ(*)
C
INTEGER I,ICEQ,IE,INOD,IS,NMST,NN
C ----------------------------------------------------------------------
NEDOF = 0
NESLV = 0
NEPRD = 0
DO 100 INOD=1,NENOD
NN = MNPC(INOD)
IS = MADOF(NN)
IE = MIN(IS+NNDOF,MADOF(NN+1)) - 1
DO 50 I=IS,IE
NEDOF = NEDOF+1
MEEN(NEDOF) = MEQN(I)
IF (MEQN(I).GE.0) GO TO 50
C
ICEQ =-MEQN(I)
NMST = MPMCEQ(ICEQ+1) - MPMCEQ(ICEQ) - 1
C ** PRESCRIBED D O F
IF (NMST.EQ.0) NEPRD = NEPRD+1
C ** DEPENDENT D O F
IF (NMST.GT.0) NESLV = NESLV+1
50 CONTINUE
100 CONTINUE
C
RETURN
END
SUBROUTINE SPRASM ( EM , TTCC ,
$ MEEN , MEQN , MMCEQ , MPMCEQ,
$ IEL , NCEQ , NDOF , NEDOF , NEL ,
$ NESLV , NEPRD , NEQ , NMMCEQ, NSV ,
$ XELNOD, ELNOD , XNODES, NODES , XSUPER,
$ XLINDX, LINDX , XLNZ , NODMAP, SUPMAP,
$ NSUPER, SPRNOD, SPRCON, NOFSUB, NZEROL,
$ IWORK , NIWORK, SM , SV ,
$ LPU , IERR )
C ------------------------------------------------------------------
IMPLICIT NONE
INTEGER IEL , NCEQ , NDOF , NEDOF , NEL , NESLV ,
$ NEPRD , NEQ , NMMCEQ, NSV ,
$ NSUPER, SPRNOD, SPRCON, NOFSUB, NZEROL, NIWORK,
$ LPU , IERR
INTEGER MEEN(NEDOF) , MEQN(NDOF) ,
$ MMCEQ(NMMCEQ) , MPMCEQ(NCEQ+1)
INTEGER XELNOD(NEL+1) , ELNOD(SPRCON) ,
$ XNODES(SPRNOD+1) , NODES(NEQ) ,
$ XSUPER(NSUPER+1) , XLINDX(NSUPER+1) ,
$ LINDX(NOFSUB) , XLNZ(NSUPER+1) ,
$ NODMAP(NEQ) , SUPMAP(NEQ) ,
$ IWORK(NIWORK)
DOUBLE PRECISION EM(*) , TTCC(*) ,
$ SM(*) , SV(*)
C ------------------------------------------------------------------
C
C Purpose
C -------
C
C SPRASM
C
C --- To assemble an element matrix into the system matrix/vector.
C
C Created : Jan. 11, 1994 (acd)
C Revisions : Mar. 03, 2003 (kmo)
C Removed arguments MPAR, MADOF, MPMNPC and MMNPC.
C Added new argument MEEN.
C
C
C EM : DOUBLE PRECISION(NEDOF,NEDOF)
C Entry : Element stiffness matrix to be assembled into SM/SV.
C Exit : Unchanged.
C TTCC : DOUBLE PRECISION(NMMCEQ)
C Entry : Table of constraint coefficients.
C Exit : Unchanged.
C MEEN : INTEGER(NEDOF)
C Entry : Matrix of equation numbers for the element DOFs.
C Exit : Unchanged.
C MEQN : INTEGER(NDOF)
C Entry : Matrix of equation numbers as output from SPRTRS.
C Exit : Unchanged.
C MPMCEQ : INTEGER(NCEQ+1)
C Entry : Matrix of pointers to MMCEQ.
C Exit : Unchanged.
C MMCEQ : INTEGER(NMMCEQ)
C Entry : Matrix of constraint equation definition for all the
C constraint equations.
C Exit : Unchanged.
C IEL : INTEGER
C Entry : The current element.
C Exit : Unchanged.
C NEDOF : INTEGER
C Entry : Number of element degrees of freedom.
C Exit : Unchanged.
C LPU : INTEGER
C Entry : Output unit for error messages.
C Exit : Unchanged.
C NSV : INTEGER
C Entry : Specifies by its absolute value the number of system
C vectors to be assembled.
C Exit : Unchanged.
C SM : DOUBLE PRECISION(NZEROL)
C Entry : Contains the current contents of the lower triangular
C part of a symmetric system matrix stored on compressed
C sparse form.
C Exit : For NSV .GE. 0, SPRASM modifies SM by adding to it
C appropriate elements of EM. If NSV .LT. 0, SM is dummy.
C SV : DOUBLE PRECISION(NEQ*ABS(NSV))
C Entry : Containts the current contents of a system vector.
C Exit : For NSV .NE. 0, SPRASM modifies SV. If NSV .EQ. 0, SV
C is dummy.
C XELNOD : INTEGER(NEL+1)
C Entry : The SPR version of MPMNPC.
C Exit : Unchanged.
C ELNOD : INTEGER(SPRCON)
C Entry : The SPR version of MMNPC.
C Exit : Unchanged.
C XNODES : INTEGER(SPRNOD+1)
C Entry : The SPR version of MADOF.
C Exit : Unchanged.
C NODES : INTEGER(NEQ)
C Entry : For each variable in a SPR-node, this array holds the
C SAM-library defined degree of freedom number.
C Exit : Unchanged.
C XSUPER : INTEGER(NSUPER+1)
C Entry : The supernode version of MADOF.
C Exit : Unchanged.
C XLINDX : INTEGER(NSUPER+1)
C Entry : Pointers to the index lists stored in LINDX.
C Exit : Unchanged.
C LINDX : INTEGER(NOFSUB)
C Entry : The set of index lists for each supernode.
C Exit : Unchanged.
C XLNZ : INTEGER(NSUPER+1)
C Entry : Pointer into SM for the the start of each supernode.
C Exit : Unchanged.
C NODMAP : INTEGER(NEQ)
C Entry : Maps each variable to its internal SPR-node.
C Exit : Unchanged.
C SUPMAP : INTEGER(NEQ)
C Entry : Maps each variable to its supernode.
C Exit : Unchanged.
C NDOF : INTEGER
C Entry : Number of degrees of freedom.
C Exit : Unchanged.
C NEL : INTEGER
C Entry : Number of elements.
C Exit : Unchanged.
C NEQ : INTEGER
C Entry : Number of free degrees of freedom.
C Exit : Unchanged.
C NSUPER : INTEGER
C Entry : Number of supernodes.
C Exit : Unchanged.
C SPRNOD : INTEGER
C Entry : Number of internal SPR-nodes.
C Exit : Unchanged.
C SPRCON : INTEGER
C Entry : Length of the SPR connectivity array ELNOD.
C Exit : Unchanged.
C NOFSUB : INTEGER
C Entry : Number of indices stored to represent SM.
C Exit : Unchanged.
C NZEROL : INTEGER
C Entry : Length of SM.
C Exit : Unchanged.
C NIWORK : INTEGER
C Entry : Length of the internal work array IWORK.
C MAX(MAXDOF,MSPAR(24))+NEQ+MSPAR(24)*(MSPAR(24)+1)/2+
C MSPAR(25)*(MSPAR(25)+1)/2. MAXDOF is the order of the
C largest original finite-element matrix.
C Exit : Unchanged.
C IERR : INTEGER
C Entry : Need not be set.
C Exit : Error flag, if zero a normal return.
C
C
C Working arrays
C --------------
C
C IWORK : INTEGER(NIWORK)
C Entry : Not defined.
C Exit : Need not be saved.
C
C Procedures
C ----------
C
C SPRT48
C SPRAD1
C SPRAD2
C SPRER1
C
C Intrinsic
C ---------
C
C None
C
C Include Blocks
C --------------
C
C None
C
C Common Blocks
C -------------
C
C None
C
C ------------------------------------------------------------------
INTEGER ELSIZE, I , IDOF , IPNODE, IWUSED, LOCIND,
$ NNODEL, NODE , NUMNOD, PSM , POINTR
LOGICAL LERROR
EXTERNAL SPRT48, SPRAD1, SPRAD2, SPRER1
C -----------
C INITIALIZE.
C -----------
IERR = 0
ELSIZE = 0
C ==================================================================
IF ( NSV .GE. 0 ) THEN
C ----------------------------
C SET SPACE IN IWORK FOR MEEN.
C ----------------------------
NUMNOD = XELNOD(IEL+1) - XELNOD(IEL)
IWUSED = 1 + NUMNOD
IF ( (IWUSED-1) .GT. NIWORK ) THEN
IERR = -1
CALL SPRER1 ( 34, 'SPRASM', IWUSED-1, NIWORK, 0, LPU, IERR )
RETURN
ENDIF
C -----------------------------------------------------
C BUILD THE GLOBAL INDEX LIST FOR THE EMBEDDED ELEMENT.
C -----------------------------------------------------
NNODEL = 0
DO 100 I = XELNOD(IEL), XELNOD(IEL+1)-1
NNODEL = NNODEL + 1
NODE = ELNOD(I)
IPNODE = XNODES(NODE)
IDOF = NODES(IPNODE)
IWORK(NNODEL) = MEQN(IDOF)
IPNODE = XNODES(NODE+1) - IPNODE
ELSIZE = ELSIZE + IPNODE
100 CONTINUE
C ----------------------------------------------
C SORT THE INDICES IN MEEN INTO ASCENDING ORDER.
C ----------------------------------------------
IF ( NNODEL .GT. 1 ) THEN
CALL SPRT48 ( NNODEL, IWORK, LERROR )
IF ( LERROR ) THEN
IERR = -2
CALL SPRER1 ( 23, 'SPRASM', 0, 0, 0, LPU, IERR )
RETURN
ENDIF
ENDIF
C ------------------------------------------------
C PARTITION THE WORK ARRAY FOR POINTR, PSM, LOCIND
C ------------------------------------------------
LOCIND = IWUSED
PSM = LOCIND + NEQ
POINTR = PSM + (ELSIZE*(ELSIZE+1)/2)
IWUSED = POINTR + (NUMNOD*(NUMNOD+1)/2)
IF ( (IWUSED-1) .GT. NIWORK ) THEN
IERR = -1
CALL SPRER1 ( 34, 'SPRASM', IWUSED-1, NIWORK, 0, LPU, IERR )
RETURN
ENDIF
C -----------------------------------
C CALL SPRAD1 TO COMPUTE PSM, LOCIND.
C -----------------------------------
CALL SPRAD1 ( XNODES, XSUPER, XLINDX, LINDX, XLNZ,
$ NODMAP, SUPMAP, NEQ, NSUPER, SPRNOD, NOFSUB,
$ NUMNOD, ELSIZE, IWORK(PSM), IWORK(LOCIND),
$ IWORK , IWORK(POINTR) )
ELSE
C -------------------------------
C ONLY ASSEMBLE SYSTEM VECTOR SV.
C -------------------------------
LOCIND = 1
PSM = 1
IF ( NIWORK .LT. 0 ) THEN
IERR = -1
CALL SPRER1 ( 34, 'SPRASM', 0, NIWORK, 0, LPU, IERR )
RETURN
ENDIF
ENDIF
C -------------------------------------------
C ASSEMBLE EM INTO SM/SV BY A CALL TO SPRAD2.
C -------------------------------------------
CALL SPRAD2 ( EM, MEEN, IWORK(LOCIND), IWORK(PSM),
$ TTCC, MEQN, MMCEQ, MPMCEQ,
$ ELSIZE, NCEQ, NDOF, NESLV+NEPRD, NEDOF, NEPRD,
$ NEQ, NMMCEQ, NSV, NZEROL, SM, SV )
C ==================================================================
RETURN
C ------------------------------------------------------------------
C END OF MODULE SPRASM
END
SUBROUTINE SPRAD1 ( XNODES, XSUPER, XLINDX, LINDX ,
$ XLNZ , NODMAP, SUPMAP, NEQ , NSUPER,
$ SPRNOD, NOFSUB, NUMNOD, ELSIZE, PSM ,
$ LOCIND, VARIND, POINTR )
C ------------------------------------------------------------------
IMPLICIT NONE
INTEGER NEQ , NSUPER, SPRNOD, NOFSUB, NUMNOD, ELSIZE
INTEGER XNODES(SPRNOD+1) ,
$ XSUPER(NSUPER+1) , XLINDX(NSUPER+1) ,
$ LINDX(NOFSUB) , XLNZ(NSUPER+1)
INTEGER NODMAP(NEQ) , SUPMAP(NEQ) ,
$ POINTR(NUMNOD*(NUMNOD+1)/2), LOCIND(NEQ) ,
$ PSM(ELSIZE*(ELSIZE+1)/2), VARIND(NUMNOD)
C ------------------------------------------------------------------
C
C Purpose
C -------
C
C SPRAD1
C
C --- To assemble an element matrix into the system matrix.
C
C Created : Jan. 11, 1994 (acd)
C Revisions : mnt. xx, 199x (acd)
C
C
C Working arrays
C --------------
C
C None
C
C Procedures
C ----------
C
C None
C
C Intrinsic
C ---------
C
C None
C
C Include Blocks
C --------------
C
C None
C
C Common Blocks
C -------------
C
C None
C
C ------------------------------------------------------------------
INTEGER COLLEN, FSTJ , I , II , IEQ , IJUMP ,
$ INOD , IPLOC , ISKIP1, ISKIP2, ISUP , ISZE ,
$ IVAR , IPLNZ , IPLX , IPJS , J , JJ ,
$ JEQ , JJUMP , JNOD , JSLEN , JSUP , JSZE ,
$ JVAR , K , KK , LPOINT, NODE , NODSZE,
$ NXTVAR, OFFSET, POINT , XLPNT
POINT(I,J,K) = ((J-1)*K) - ((J-1)*(J-2)/2) + I - J + 1
C ==================================================================
C ---------------------------------------
C COMPUTE POINTERS INTO THE SYSTEM MATRIX
C FOR THE FIRST VARIABLE IN EACH NODE IN
C THE EMBEDDED MATRIX.
C ---------------------------------------
K = NUMNOD
DO 400 J = 1, NUMNOD
C -----------------------------------------
C GET THE FIRST VARIABLE AND ITS SUPERNODE.
C -----------------------------------------
JVAR = VARIND(J)
JSUP = SUPMAP(JVAR)
C ----------------------------------------
C GET FIRST VARIABLE IN THE SUPERNODE
C AND THE POINTER TO THE START OF INDICES.
C ----------------------------------------
FSTJ = XSUPER(JSUP)
IPLX = XLINDX(JSUP)
C --------------------------------
C GET THE SIZE OF THE SUPERNODE
C ASSOCIATED WITH JVAR AND COMPUTE
C THE LENGTH OF THE SUPERNODE.
C --------------------------------
ISKIP1 = XSUPER(JSUP+1) - JVAR
ISKIP2 = XSUPER(JSUP+1) - FSTJ
COLLEN = XLINDX(JSUP+1) - IPLX
C ------------------------------------------
C COMPUTE THE COLUMN IN JSUP ASSOCIATED WITH
C JVAR AND COMPUTE THE OFFSET INTO SM.
C ------------------------------------------
JJUMP = JVAR - FSTJ
OFFSET = (COLLEN*JJUMP) - (JJUMP*(JJUMP-1)/2)
C -----------------------
C POINTER FOR DIAG IN SM.
C -----------------------
LPOINT = XLNZ(JSUP) + OFFSET
POINTR(POINT(J,J,K)) = LPOINT
XLPNT = LPOINT
LPOINT = LPOINT + ISKIP1
C ----------------------------
C INCREMENT POINTER TO INDICES
C TO FIRST OFF-SUPER INDEX.
C ----------------------------
IPLX = IPLX + ISKIP2
DO 300 I = J+1, NUMNOD
C -------------------------------
C GET INFO FOR THE NEXT VARIABLE.
C -------------------------------
IVAR = VARIND(I)
ISUP = SUPMAP(IVAR)
IF ( ISUP .EQ. JSUP ) THEN
C ----------------------------------
C IVAR IS IN SAME SUPERNODE AS JVAR,
C NO INDEX SEARCH IS NECESSARY.
C ----------------------------------
IJUMP = IVAR - JVAR
POINTR(POINT(I,J,K)) = XLPNT + IJUMP
ELSE
C -----------------------------------
C IVAR IS NOT IN SAME SUPERNODE,
C SEARCH IN LINDX FOR MATCHING INDEX.
C -----------------------------------
200 NXTVAR = LINDX(IPLX)
IF ( NXTVAR .LE. IVAR ) THEN
IF ( NXTVAR .EQ. IVAR ) POINTR(POINT(I,J,K)) = LPOINT
NODE = NODMAP(NXTVAR)
NODSZE = XNODES(NODE+1) - XNODES(NODE)
IPLX = IPLX + NODSZE
LPOINT = LPOINT + NODSZE
IF ( NXTVAR .LT. IVAR ) GOTO 200
ENDIF
ENDIF
300 CONTINUE
400 CONTINUE
C -----------------------------------------------
C COMPUTE LOCAL INDICES INTO THE EMBEDDED MATRIX.
C -----------------------------------------------
IPLOC = 0
DO 600 I = 1, NUMNOD
IVAR = VARIND(I)
NODE = NODMAP(IVAR)
NODSZE = XNODES(NODE+1) - XNODES(NODE)
DO 500 J = 1, NODSZE
IPLOC = IPLOC + 1
LOCIND(IVAR) = IPLOC
IVAR = IVAR + 1
500 CONTINUE
600 CONTINUE
C -----------------------------------------
C COMPUTE THE REST OF THE POINTERS INTO SM.
C -----------------------------------------
KK = ELSIZE
DO 1200 J = 1, NUMNOD
C ----------------------------
C GET VARIABLE AND BASIC INFO.
C ----------------------------
JVAR = VARIND(J)
JSUP = SUPMAP(JVAR)
FSTJ = XSUPER(JSUP)
JJUMP = JVAR - FSTJ
COLLEN = XLINDX(JSUP+1) - XLINDX(JSUP) - JJUMP
JNOD = NODMAP(JVAR)
JSZE = XNODES(JNOD+1) - XNODES(JNOD)
IPLNZ = POINTR(POINT(J,J,K))
C --------------------------------
C POINTERS FOR THE DIAGONAL BLOCK.
C --------------------------------
JSLEN = COLLEN
IPJS = IPLNZ
DO 800 JJ = JVAR, JVAR+JSZE-1
JEQ = LOCIND(JJ)
DO 700 II = JJ, JVAR+JSZE-1
IEQ = LOCIND(II)
PSM(POINT(IEQ,JEQ,KK)) = IPJS
IPJS = IPJS + 1
700 CONTINUE
IPLNZ = IPLNZ + JSLEN
IPJS = IPLNZ
JSLEN = JSLEN - 1
800 CONTINUE
C ------------------------------------
C POINTERS FOR THE OFF-DIAGONAL BLOCK.
C ------------------------------------
COLLEN = COLLEN - 1
DO 1100 I = J+1, NUMNOD
C ----------------------------
C GET VARIABLE AND BASIC INFO.
C ----------------------------
IVAR = VARIND(I)
INOD = NODMAP(IVAR)
ISZE = XNODES(INOD+1) - XNODES(INOD)
IPLNZ = POINTR(POINT(I,J,K))
JSLEN = COLLEN
IPJS = IPLNZ
DO 1000 JJ = JVAR, JVAR+JSZE-1
JEQ = LOCIND(JJ)
DO 900 II = IVAR, IVAR+ISZE-1
IEQ = LOCIND(II)
PSM(POINT(IEQ,JEQ,KK)) = IPJS
IPJS = IPJS + 1
900 CONTINUE
IPLNZ = IPLNZ + JSLEN
IPJS = IPLNZ
JSLEN = JSLEN - 1
1000 CONTINUE
1100 CONTINUE
1200 CONTINUE
C ==================================================================
RETURN
C ------------------------------------------------------------------
C END OF MODULE SPRAD1
END
SUBROUTINE SPRAD2 ( EM , MEEN , LOCIND, PSM ,
$ TTCC , MEQN , MMCEQ , MPMCEQ,
$ ELSIZE, NCEQ , NDOF , NECEQ , NEDOF ,
$ NEPRD , NEQ , NMMCEQ, NSV , NZEROL,
$ SM , SV )
IMPLICIT NONE
INTEGER ELSIZE, NCEQ , NDOF , NECEQ , NEDOF , NEPRD ,
$ NEQ , NMMCEQ, NSV , NZEROL
INTEGER MEEN(NEDOF) , LOCIND(NEQ) ,
$ PSM(ELSIZE*(ELSIZE+1)/2) ,
$ MEQN(NDOF) , MMCEQ(NMMCEQ) ,
$ MPMCEQ(NCEQ+1)
DOUBLE PRECISION EM(NEDOF,NEDOF) , TTCC(NMMCEQ) ,
$ SM(NZEROL) , SV(NEQ)
C **********************************************************************
C
C S A M LIBRARY ROUTINE : SPRAD2 GROUP 7 / PRIVATE
C
C T A S K : TO ADD/SUBTRACT THE ELEMENTS CORRESPONDING TO FREE AND
C CONSTRAINED D O F S OF THE ELEMENT MATRIX EM TO/FROM THE
C CURRENT CONTENT OF THE APPROPRIATE ELEMENTS OF
C MATRIX SM IF NSV.GE.0 (ADDITION WITHOUT/WITH WEIGHTING)
C VECTOR(S) SV IF NSV.NE.0 (SUBTRACTION WITH WEIGHTING)
C SM IS A SYMMETRIC SYSTEM MATRIX STORED IN 'COMPRESSED SPARSE' FORM
C AND SV IS A SYSTEM VECTOR (ABS(NSV)=1) OR A SET OF SYSTEM VECTORS
C (ABS(NSV)=NPDOF) CONTAINING THE CONTRIBUTIONS TO THE RIGHT-HAND
C SIDE(S) FROM PRESCRIBED AND (POSSIBLY) DEPENDENT D O F S.
C
C ROUTINES CALLED/REFERENCED : ABS (FORTRAN LIBRARY)
C
C PROGRAMMED BY : KOLBEIN BELL
C DATE/VERSION : 86-01-14 / 1.0
C 94-01-11 / 2.0 A.C.Damhaug
C Changed ADDEM to SPRAD2 and adapted
C to new definition of storage for SM.
C 02-07-20 / 2.1 K.M.Okstad
C Replaced ELMEQ by ELMEQ2 to allow
C elements having fewer nodal DOFs than
C given by the system array MADOF.
C 02-09-06 / 2.2 K.M.Okstad
C Removed the local arrays MMST[IJ] and
C call to SLVEQ, such that there is no
C limit on the number of master DOFs
C for a constraint equation.
C 03-03-03 / 3.0 K.M.Okstad
C Moved call to ELMEQ2 and some error
C checking to the calling routine.
C Removed MPAR,MADOF,MPMNPC and MMNPC.
C Added MEEN as an argument instead.
C 05-10-10 / 3.1 K.M.Okstad
C Check for MMCEQ.GT.0 and TTCC.NE.0
C
C **********************************************************************
C CONDITIONALS : S - SINGLE PRECISION
C (COLUMN 2) D - DOUBLE PRECISION
C **********************************************************************
INTEGER I , ICEQ , IEI , IEQ , II , IP ,
$ J , JCEQ , JEJ , JEQ , JJ , JP ,
$ K , KEQ , KP , NMSTI , NMSTJ , PPSM
DOUBLE PRECISION C0,ZERO
PARAMETER ( ZERO = 0.0D0 )
INTRINSIC ABS
PPSM(I,J,K) = ((J-1)*K) - ((J-1)*(J-2)/2) + I - J + 1
C ----------------------------------------------------------------------
IF (NSV.LT.0) GO TO 220
C ----------------------------------------------------------------------
C ADD ELEMENTS CORRESPONDING TO FREE D O F S IN EM INTO SM
C ----------------------------------------------------------------------
DO 200 J=1,NEDOF
JEQ = MEEN(J)
IF (JEQ.LT.1) GO TO 200
DO 150 I=1,J
IEQ = MEEN(I)
IF (IEQ.LT.1) GO TO 150
IF ( IEQ.LT.JEQ ) THEN
C -----------------
C SWAP THE INDICES.
C -----------------
IEI = LOCIND(JEQ)
JEJ = LOCIND(IEQ)
ELSEIF ( IEQ.GT.JEQ ) THEN
C -----------------
C KEEP THE INDICES.
C -----------------
IEI = LOCIND(IEQ)
JEJ = LOCIND(JEQ)
ELSE
C ---------------
C DIAGONAL ENTRY.
C ---------------
IEI = LOCIND(IEQ)
JEJ = IEI
ENDIF
C ------------------------
C FIND THE LOCATION IN SM.
C ------------------------
K = PSM(PPSM(IEI,JEJ,ELSIZE))
C --------------------------
C ASSEMBLE THE CONTRIBUTION.
C --------------------------
SM(K) = SM(K) + EM(I,J)
150 CONTINUE
200 CONTINUE
220 IF (NECEQ.EQ.0) GO TO 1000
IF (NSV.LT.(-1).AND.NEPRD.EQ.0) GO TO 1000
C ----------------------------------------------------------------------
C ADD (APPROPRIATELY WEIGHTED) ELEMENTS CORRESPONDING TO CONSTRAINED
C (DEPENDENT AND PRESCRIBED) D O F S IN EM INTO SM AND/OR SV
C ----------------------------------------------------------------------
DO 600 J=1,NEDOF
IF (MEEN(J).GE.0) GO TO 600
JCEQ =-MEEN(J)
JP = MPMCEQ(JCEQ)
IF (NSV.EQ.0) GO TO 320
C0 = TTCC(JP)
IF (C0.EQ.ZERO) GO TO 310
KP = 0
IF (ABS(NSV).EQ.1) GO TO 250
K = 0
IF (MPMCEQ(JCEQ+1)-MPMCEQ(JCEQ).GT.1) GO TO 310
DO 240 I=1,JCEQ
IF (MPMCEQ(I+1)-MPMCEQ(I).EQ.1) K = K + 1
240 CONTINUE
IF (K.EQ.0) GO TO 310
KP = (K-1)*NEQ
C ** ADD CONTRIBUTIONS
C TO SV (R-H SIDE)
250 DO 300 I=1,NEDOF
IEQ = MEEN(I)
IF (IEQ.EQ.0) GO TO 300
IF (IEQ.LT.0) GO TO 260
KEQ = KP+IEQ
SV(KEQ) = SV(KEQ) - C0*EM(I,J)
GO TO 300
260 ICEQ =-IEQ
NMSTI = MPMCEQ(ICEQ+1) - MPMCEQ(ICEQ) - 1
IF (NMSTI.LE.0) GO TO 300
IP = MPMCEQ(ICEQ)
DO 280 II=1,NMSTI
IP = IP+1
IF (MMCEQ(IP).LE.0 .OR. TTCC(IP).EQ.ZERO) GO TO 280
KEQ = KP+MEQN(MMCEQ(IP))
SV(KEQ) = SV(KEQ) - C0*TTCC(IP)*EM(I,J)
280 CONTINUE
300 CONTINUE
310 IF (NSV.LT.0) GO TO 600
320 NMSTJ = MPMCEQ(JCEQ+1) - MPMCEQ(JCEQ) - 1
IF (NMSTJ.LE.0) GO TO 600
C ** ADD CONTRIBUTIONS
C TO SM
DO 500 JJ=1,NMSTJ
JP = JP+1
IF (MMCEQ(JP).LE.0 .OR. TTCC(JP).EQ.ZERO) GO TO 500
JEQ = MEQN(MMCEQ(JP))
DO 400 I=1,NEDOF
IEQ = MEEN(I)
IF (IEQ.EQ.0) GO TO 400
IF (IEQ.LT.0) GO TO 360
IF (IEQ.NE.JEQ) THEN
IF (IEQ.LT.JEQ) THEN
C -----------------
C SWAP THE INDICES.
C -----------------
IEI = LOCIND(JEQ)
JEJ = LOCIND(IEQ)
ELSE
C -----------------
C KEEP THE INDICES.
C -----------------
IEI = LOCIND(IEQ)
JEJ = LOCIND(JEQ)
ENDIF
C ------------------------
C FIND THE LOCATION IN SM.
C ------------------------
K = PSM(PPSM(IEI,JEJ,ELSIZE))
C --------------------------
C ASSEMBLE THE CONTRIBUTION.
C --------------------------
SM(K) = SM(K) + TTCC(JP)*EM(I,J)
ELSE
C ---------------
C DIAGONAL ENTRY.
C ---------------
IEI = LOCIND(IEQ)
JEJ = IEI
C ------------------------
C FIND THE LOCATION IN SM.
C ------------------------
K = PSM(PPSM(IEI,JEJ,ELSIZE))
C --------------------------
C ASSEMBLE THE CONTRIBUTION.
C --------------------------
SM(K) = SM(K) + (TTCC(JP)+TTCC(JP))*EM(I,J)
ENDIF
GOTO 400
360 ICEQ =-IEQ
NMSTI = MPMCEQ(ICEQ+1) - MPMCEQ(ICEQ) - 1
IF (NMSTI.LE.0) GO TO 400
IP = MPMCEQ(ICEQ)
DO 380 II=1,NMSTI
IP = IP+1
IF (MMCEQ(IP).LE.0 .OR. TTCC(IP).EQ.ZERO) GO TO 380
IEQ = MEQN(MMCEQ(IP))
IF (IEQ.LE.JEQ) THEN
C -----------------
C SWAP THE INDICES.
C -----------------
IEI = LOCIND(JEQ)
JEJ = LOCIND(IEQ)
C ------------------------
C FIND THE LOCATION IN SM.
C ------------------------
K = PSM(PPSM(IEI,JEJ,ELSIZE))
C --------------------------
C ASSEMBLE THE CONTRIBUTION.
C --------------------------
SM(K) = SM(K) + TTCC(IP)*TTCC(JP)*EM(I,J)
ENDIF
380 CONTINUE
400 CONTINUE