forked from wSemis/GSST--anytime-guarenteed-search
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
371 lines (340 loc) · 15.9 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib.colors import to_rgba
from collections import Counter
from random import random, seed
class Graph:
def __init__(self, arg=None, directed=False, pos=None) -> None:
'''
Initializes a Graph object which will store the networkx graph and other informations.
Attributes:
- is_directed: Is the graph directed or undirected?
- start: Starting node if the graph
- g: The nx graph object
- pos: Position of the nodes
- t: The (labeled) tree version of the graph, this attribute DNE if the graph is a tree
'''
self.is_directed = directed
self.start = None
if arg is None: # create a random graph if initial layout is not provided
edge_list = self.random_graph()
edge_attrs = -1
elif isinstance(arg, nx.Graph):
edge_list = arg.edges()
edge_attrs = nx.get_edge_attributes(arg, 'label')
print('edge attr', edge_attrs)
elif isinstance(arg, list):
edge_list = arg
edge_attrs = -1
else:
raise NotImplementedError
self.g = [nx.Graph, nx.DiGraph][directed](edge_list)
nx.set_edge_attributes(self.g, edge_attrs, 'label')
self.pos = pos
def add_sta(self, sta=0) -> None:
'''
Adds a starting node,
'''
self.start = sta
self.g.add_edge('sta', sta)
def random_graph(self) -> list[list[int]]:
'''
Generates an edge list of a graph with N vertices and branching factor k,
where N is randomized between 10 to 20 and k is randomized between 2 to 5.
'''
k = np.random.randint(2, 5)
print(f'Random branching factor k = {k}')
N = np.random.randint(10, 20)
print(f'Random number of vertices N = {N}')
edge_list = []
visited = [0]
to_visit = list(range(1, N))
for _ in range(N-1):
sta = np.random.choice(visited)
end = np.random.choice(to_visit)
to_visit.remove(end)
visited.append(end)
a,b = min(sta, end), max(sta, end)
edge_list.append((a,b))
edges = {}
for i in range(N):
for j in range(i+1, N):
edges[(i, j)] = 1
for edge in edge_list:
edges.pop(edge)
edges = list(edges.keys())
length = k * N // 2 - (N-1)
idxs = np.random.choice(len(edges), length, replace=False)
for i in idxs:
edge = edges[i]
edge_list.append(edge)
return edge_list
def is_tree(self) -> bool:
'''
Checks if a graph is a tree or not.
'''
if self.g.is_directed():
return nx.is_tree(self.g.to_undirected())
return nx.is_tree(self.g)
def generate_random_spanning_tree(self) -> None:
'''
Generates a random spanning tree.
If the initial graph is not a tree, use Algorithm 4.
'''
if self.is_tree():
return self
else:
# Use Algorithm 4
edges = []
sta = 'sta'
visited = {node: False for node in self.g.nodes()}
parents = dict()
while len(edges) != self.g.number_of_nodes() - 1:
visited[sta] = True
neighbors = []
for v in self.g[sta]:
if not visited[v]:
neighbors.append(v)
if len(neighbors) == 0:
sta = parents[sta]
continue
end = np.random.choice(neighbors)
parents[end] = sta
edges.append((sta, end))
sta = end
non_tree_edges = []
for a,b in self.g.edges():
if (a,b) in edges or (b,a) in edges:
continue
non_tree_edges.append((min(a,b), max(a,b)))
# Create the (undirected) tree version of it
self.t = Graph(edges, directed=False)
self.t.start = self.start
self.t.pos = self.pos
self.B = non_tree_edges
self.t.label() # Label the edges as per Algorithm 2
def get_spanning_tree(self) -> tuple["Graph", list[list[int]]]:
'''
Algorithm 4, returns the tree edges and the non-tree edges.
'''
if not hasattr(self, 't'):
self.generate_random_spanning_tree()
return self.t, self.B
def label_reverse(self, parents: list[int]) -> None:
'''
Reverse labelling after Algorithm 2 is performed.
'''
for i in range(0, self.g.number_of_nodes()):
if i in parents:
self.g.edges[(i, parents[i])]['label'] = -self.g.edges[(parents[i], i)]['label']
def label(self) -> None:
'''
Labels the spanning tree as per Algorithm 2.
'''
assert self.is_tree(), "Method only applicable to trees"
# BFS traversal in a parent-child structure
parents = dict(nx.bfs_predecessors(self.g, 'sta'))
def is_leaf(node):
if self.is_directed:
return self.g.in_degree(node) == 1 and node != 'sta'
else:
return self.g.degree(node) == 1 and node != 'sta'
def get_edge_info(node):
adj = list(self.g[node])
edge_labels = [self.g.edges[(node, neighbor)]['label'] for neighbor in adj]
label_counts = Counter(edge_labels) # to check for majority label
return adj, edge_labels, label_counts
def get_parent(node):
return parents[node]
# Algorithm 2
buffer = [x for x in self.g.nodes() if is_leaf(x)]
while buffer:
node = buffer.pop()
if is_leaf(node):
# the only edge, so assign label to 1
parent = get_parent(node)
self.g.edges[(parent, node)]['label'] = 1
else:
adj, edge_labels, label_counts = get_edge_info(node)
# if it has exactly one unlabeled edge
if label_counts[-1] == 1:
# find that unlabeled edge
child = adj[edge_labels.index(-1)]
l_max = max(edge_labels)
if l_max == -1: continue
max_cout = label_counts[l_max]
if max_cout == 1:
self.g.edges[(node, child)]['label'] = l_max
else:
self.g.edges[(node, child)]['label'] = l_max + 1
if node != 'sta':
# if current node != start and its parent has exactly one unlabeled edge
# add the parent node to buffer
parent = get_parent(node)
adj, edge_labels, label_counts = get_edge_info(parent)
if label_counts[-1] == 1:
buffer.append(parent)
# Set number of searchers for Algorithm 5
self.mu = self.g.edges[('sta', self.start)]['label']
self.g = self.g.to_directed()
self.label_reverse(parents)
def visualize(self, save=True, filename='testrun', ax=None, step=None, robot=False):
def get_nudge(node='sta', searcher=None, jitter=0.2):
if node == 'sta': return (0, 0)
if searcher: seed(searcher.id)
return ((random()*2-1)*jitter, (random()*2-1)*jitter)
if hasattr(self, 'fig_size'):
fig_size = self.fig_size
else:
fig_size = (10, 10)
if ax is None:
_, ax = plt.subplots(1, 1, figsize=fig_size)
ax.set_xticks(np.arange(0, fig_size[0], 1))
ax.set_yticks(np.arange(0, fig_size[1], 1))
if hasattr(self, 'node_size'):
node_size = self.node_size
else:
node_size = 300
if hasattr(self, 'bg'):
ax.imshow(self.bg, extent=[0, fig_size[0], 0, fig_size[1]])
elif robot:
robot = False
if not self.is_tree():
if not hasattr(self, 't'):
if self.pos is None:
pos = nx.spring_layout(self.g)
else:
pos = self.pos
nx.draw_networkx(self.g, pos=pos, with_labels=True, node_color='c', ax=ax, node_size=node_size, width=3)
else:
if self.pos is None:
pos = nx.spring_layout(self.t.g, k=3, seed=1)
else:
pos = self.pos
try:
visited_nodes = {node for node in self.g.nodes() if self.g.nodes[node]['visited']}
except KeyError:
visited_nodes = set('sta')
searcher_per_node = nx.get_node_attributes(self.g, 'searcher_number')
guard_per_node = nx.get_node_attributes(self.g, 'guard_number')
searcher_per_node_viz = nx.get_node_attributes(self.g, 'searcher_viz')
guard_per_node_viz = nx.get_node_attributes(self.g, 'guard_viz')
robot_per_node = {k: searcher_per_node[k] + guard_per_node[k] for k in searcher_per_node.keys()}
robot_per_node_viz = {k: searcher_per_node_viz[k] + guard_per_node_viz[k] for k in searcher_per_node.keys()}
node_type = {}
for n in self.g.nodes():
if n in visited_nodes:
node_type[n] = 'visited'
if n in robot_per_node and robot_per_node[n] > 0:
node_type[n] = 'current'
else:
node_type[n] = 'unvisited'
node_colors = []
for node in self.g.nodes():
if node == 'sta':
node_colors.append('red')
elif node_type[node] == 'unvisited':
node_colors.append('grey')
elif node_type[node] in 'visited':
node_colors.append('green')
elif not robot:
node_colors.append('cyan')
else:
node_colors.append(['grey', 'green'][robot])
if not robot: ax.set_title(f'Time: {step if step != None else 0}\nRed: starting point Green: cleared Gray: may contain target Cyan: has searcher', fontsize=17)
else: ax.set_title(f'Time: {step if step != None else 0}\nRed: starting point Green: cleared Gray: may contain target', fontsize=17)
node_label = {n: robot_per_node[n] if node_type[n]=='current' else '' for n in self.g.nodes()}
nx.draw_networkx_nodes(self.g, pos=pos, node_color=node_colors, node_size=node_size, ax=ax)
if not robot:
nx.draw_networkx_labels(self.g, labels=node_label, pos=pos, ax=ax)
else:
for n in self.g.nodes():
for s in robot_per_node_viz[n]:
x, y = pos[n]
plt.gca().add_patch(plt.Circle((x+get_nudge(n, searcher=s)[0], y+get_nudge(n, searcher=s)[1]), 0.15, facecolor=to_rgba(s.color, alpha=0.5), edgecolor=s.color, zorder=10))
tree_edges = self.t.g.edges()
non_tree_edges = self.B
edge_colors = []
edge_styles = []
for edge in self.g.edges():
a,b = edge
if (a,b) in tree_edges or (b,a) in tree_edges:
edge_styles.append('-')
else:
edge_styles.append('--')
if node_type[a] == 'unvisited' and node_type[b] == 'unvisited':
edge_colors.append('black')
elif node_type[a] == 'unvisited' or node_type[b] == 'unvisited':
edge_colors.append('cyan')
else:
edge_colors.append('green')
edge_styles = np.array(edge_styles)
if not robot: nx.draw_networkx_edges(self.g, pos=pos, edge_color=edge_colors, style=edge_styles, ax=ax, width=3)
else:
if self.g.is_directed():
pos = nx.nx_agraph.graphviz_layout(self.t.g, prog='circo',args="-Grankdir=LR", root='sta')
try:
visited_nodes = {node for node in self.g.nodes() if self.g.nodes[node]['visited']}
except KeyError:
visited_nodes = set('sta')
searcher_per_node = nx.get_node_attributes(self.g, 'searcher_number')
guard_per_node = nx.get_node_attributes(self.g, 'guard_number')
searcher_per_node_viz = nx.get_node_attributes(self.g, 'searcher_viz')
guard_per_node_viz = nx.get_node_attributes(self.g, 'guard_viz')
robot_per_node = {k: searcher_per_node[k] + guard_per_node[k] for k in searcher_per_node.keys()}
robot_per_node_viz = {k: searcher_per_node_viz[k] + guard_per_node_viz[k] for k in searcher_per_node.keys()}
node_type = {}
for n in self.g.nodes():
if n in visited_nodes:
node_type[n] = 'visited'
if n in robot_per_node and robot_per_node[n] > 0:
node_type[n] = 'current'
else:
node_type[n] = 'unvisited'
node_colors = []
for node in self.g.nodes():
if node == 'sta':
node_colors.append('red')
elif node_type[node] == 'unvisited':
node_colors.append('grey')
elif node_type[node] == 'visited':
node_colors.append('green')
elif not robot:
node_colors.append('cyan')
else:
node_colors.append(['grey', 'green'][robot])
if not robot: ax.set_title(f'Time: {step if step != None else 0}\nRed: starting point Green: cleared Gray: may contain target Cyan: has searcher', fontsize=17)
else: ax.set_title(f'Time: {step if step != None else 0}\nRed: starting point Green: cleared Gray: may contain target', fontsize=17)
node_label = {n: robot_per_node[n] if node_type[n]=='current' else '' for n in self.g.nodes()}
nx.draw_networkx_nodes(self.g, pos=pos, node_color=node_colors, node_size=node_size, ax=ax)
if not robot:
nx.draw_networkx_labels(self.g, labels=node_label, pos=pos, ax=ax)
else:
for n in self.g.nodes():
for s in robot_per_node_viz[n]:
x, y = pos[n]
plt.gca().add_patch(plt.Circle((x+get_nudge(n, searcher=s)[0], y+get_nudge(n, searcher=s)[1]), 0.15, facecolor=to_rgba(s.color, alpha=0.5), edgecolor=s.color, zorder=10))
G = self.g
curved_edges = [edge for edge in G.edges() if reversed(edge) in G.edges()]
straight_edges = list(set(G.edges()) - set(curved_edges))
if not robot: nx.draw_networkx_edges(G, pos, ax=ax)
else:
pos = nx.nx_agraph.graphviz_layout(self.g, prog='dot')
nx.draw(self.g, pos=pos, with_labels=True, node_color='c', ax=ax, node_size=node_size)
if save:
plt.savefig(filename)
plt.close()
else:
plt.show()
if __name__ == "__main__":
g = Graph()
g.add_sta()
print('Vertex number:', g.g.number_of_nodes())
print('Edge number:', len(g.g.edges()))
print('Actual Branching Factor', np.average([tup[1] for tup in g.g.degree()]))
g.visualize()
print()
print("Random spanning tree")
g.generate_random_spanning_tree()
g.visualize(filename='testrun_tree.png')