-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathDPPS_train.py
125 lines (99 loc) · 3.8 KB
/
DPPS_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 29 17:29:07 2023
@author: ruby
"""
import torch
import torch.nn as nn
from torch.autograd import Variable
import io
#import requests
import torch.utils.data as data_utils
import os
#from datasets import pms_transforms
#from datasets import util
from DPPS_model import DPPSnet, FeatureResNet
from DPPS_Dataset import DPPS_Dataset
from datetime import datetime
dataString = datetime.strftime(datetime.now(), '%Y_%m_%d_%H_%M_%S')
fnet = FeatureResNet()
DPPS = DPPSnet(fnet)
DPPS = DPPS.cuda()
EPOCH = 100 # train the training data n times, to save time, we just train 1 epoch
BATCH_SIZE = 12
print('BATCH_SIZE = ',BATCH_SIZE)
LR = 0.00005 # learning rate
#root = './gdrive_northwestern/My Drive/dl_encoder/data/orig/orig'
NUM_WORKERS = 0
optimizer = torch.optim.Adam(DPPSnet.parameters(), lr=LR) # optimize all cnn parameters
#optimizer = torch.optim.SGD(cnn.parameters(), lr=LR, momentum=0.9) # optimize all cnn parameters
loss_func = nn.MSELoss()
file1 = open('train_set.txt', 'r')
Lines = file1.readlines()
train_set = []
for line in Lines:
new_item = line[:-1].split(',')
train_set.append(new_item)
file1 = open('test_set.txt', 'r')
Lines = file1.readlines()
test_set = []
for line in Lines:
new_item = line[:-1].split(',')
test_set.append(new_item)
train_data=DPPS_Dataset(dataset=train_set)
train_loader = data_utils.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
test_data=DPPS_Dataset(dataset=test_set)
test_loader = data_utils.DataLoader(dataset=test_data, batch_size=1)
Train_root = '/Train_'+dataString[4:10]+'/'
os.mkdir(Train_root)
model_root = Train_root+'model/'
log_root = Train_root+'log/'
os.mkdir(model_root)
os.mkdir(log_root)
fileOut=open(log_root+'log'+dataString,'a')
fileOut.write(dataString+'\n'+'Epoch: Step: Loss: Val_Accu :\n')
fileOut.close()
fileOut2 = open(log_root+'validation'+dataString, 'a')
fileOut2.write(dataString+'\n'+'Epoch: loss:')
fileOut2.close()
for epoch in range(1,100):
DPPS.train()
for step, (img,gt1,gt2) in enumerate(train_loader):
img = Variable(img).cuda()
gt1=gt1.unsqueeze(1).float()
gt1 = Variable(gt1).cuda()
gt2=gt2.float()
gt2 = Variable(gt2).cuda()
output = DPPS(img)
loss1 = loss_func(output[0], gt2)
loss2 = loss_func(output[1], gt1)
loss = loss1+loss2
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step%50 == 0:
print(epoch, step, loss.data.item(),loss1.data.item(),loss2.data.item())
fileOut=open(log_root+'log'+dataString,'a')
fileOut.write(str(epoch)+' '+str(step)+' '+str(loss.data.item())+' '+str(loss1.data.item())+' '+str(loss2.data.item())+'\n')
fileOut.close()
if epoch%10 == 9:
PATH = model_root + 'param_n_3_' + str(epoch) + '_' + str(step)
torch.save(DPPS.state_dict(), PATH)
print('finished saving checkpoints')
LOSS_VALIDATION = 0
DPPS.eval()
with torch.no_grad():
for step, (img,gt1,gt2) in enumerate(test_loader):
img = Variable(img).cuda()
gt1=gt1.unsqueeze(1).float()
gt1 = Variable(gt1).cuda()
gt2=gt2.float()# batch x
gt2 = Variable(gt2).cuda()
output = DPPS(img)
LOSS_VALIDATION += loss_func(output[1], gt1)+loss_func(output[0], gt2)
LOSS_VALIDATION = LOSS_VALIDATION/step
fileOut2 = open(log_root+'validation'+dataString, 'a')
fileOut2.write(str(epoch)+' '+str(step)+' '+str(LOSS_VALIDATION.data.item())+'\n')
fileOut2.close()
print('validation error epoch '+str(epoch)+': '+str(LOSS_VALIDATION)+'\n'+str(step))