-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclustering_diversity.py
47 lines (32 loc) · 1.26 KB
/
clustering_diversity.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import pandas as pd
import numpy as np
import csv
from utils import *
import timeit
# Reading data:
dataset_choice = input("Please indicate which dataset you choose? Enter 1 for Food and 2 for Car Dataset: ")
start = timeit.default_timer()
if dataset_choice == "1":
R = FoodData_preprocessing()
file_path = "group_Mambers_IDs_FoodData_Diversity_Clustering.csv"
if dataset_choice == "2":
R = CarData_preprocessing()
file_path = "group_Ma1mbers_IDs_CarData_Diversity_Clusteringlustering.csv"
print (R)
# matrix factorization:
k = 10 # len of embeddings
User_Embedding, PairItems_Embedding = mf(R, k, n_epoch=100, lr=.01, l2=.04) # Matrix Factorization
# Clustering with Shapley value:
clusters = cluster_users(User_Embedding, threshold=1.0, max_users=4)
print("Clusters:", clusters)
# Saving the groups ids as a csv file:
# Write the 2D list to the CSV file
with open(file_path, 'w', newline='') as csvfile:
csv_writer = csv.writer(csvfile)
for row in clusters:
csv_writer.writerow(row)
print("CSV file saved successfully.")
#Calculate the "Diversity clustering Execution time"
stop = timeit.default_timer()
execution_time = stop - start
print("Program Executed for Diversity clustering: "+str(execution_time)) # It returns time in seconds