A set of introductory exercises for Julia. Based on 100 NumPy Exercises.
In order to generate this file:
- Clone the repository (Or download).
- Activate and instantiate the project.
- Run:
using Literate;
Literate.markdown("Julia100Exercises.jl", name = "README", execute = true, flavor = Literate.CommonMarkFlavor());
Remark: Tested with Julia 1.8.2
.
To Do:
- Reevaluate the difficulty level of each question.
using Literate;
using LinearAlgebra;
using Statistics;
using Dates;
using DelimitedFiles;
using UnicodePlots;
using Random;
using Tullio;
using StaticKernels;
Import the LinearAlgebra
package under the name LA
. (★☆☆)
import LinearAlgebra as LA;
Print the version of Julia. (★☆☆)
println(VERSION);
1.8.2
Create a non initialized vector of size 10 of Float64
. (★☆☆)
vA = Vector{Float64}(undef, 10)
10-element Vector{Float64}:
0.0
1.314224183e-315
1.314224183e-315
0.0
1.314248214e-315
1.31427351e-315
0.0
1.314248214e-315
1.314106556e-315
0.0
Which is equivalent of
vA = Array{Float64, 1}(undef, 10)
10-element Vector{Float64}:
0.0
1.314248214e-315
1.314106556e-315
0.0
1.314248214e-315
1.314106556e-315
0.0
1.314248214e-315
1.314106556e-315
0.0
Find the memory size of any array. (★☆☆)
sizeof(vA)
80
Show the documentation of the +
(Add) method. (★☆☆)
@doc +
+(x, y...)
Addition operator. x+y+z+...
calls this function with all arguments, i.e. +(x, y, z, ...)
.
julia> 1 + 20 + 4
25
julia> +(1, 20, 4)
25
dt::Date + t::Time -> DateTime
The addition of a Date
with a Time
produces a DateTime
. The hour, minute, second, and millisecond parts of the Time
are used along with the year, month, and day of the Date
to create the new DateTime
. Non-zero microseconds or nanoseconds in the Time
type will result in an InexactError
being thrown.
Create a vector of zeros of size 10 but the fifth value which is 1. (★☆☆)
vA = zeros(10);
vA[5] = 1.0;
vA
10-element Vector{Float64}:
0.0
0.0
0.0
0.0
1.0
0.0
0.0
0.0
0.0
0.0
Create a vector with values ranging from 7 to 12. (★☆☆)
vA = 7:12
7:12
The above is efficient type. In order to explicitly create a vector:
vA = collect(7:12)
6-element Vector{Int64}:
7
8
9
10
11
12
Reverse a vector (first element becomes last). (★☆☆)
vA = collect(1:3);
vB = vA[end:-1:1];
vB
3-element Vector{Int64}:
3
2
1
Alternative 001:
vB = reverse(vA);
Alternative 002 (In place):
reverse!(vA);
vA
3-element Vector{Int64}:
3
2
1
Create a 3x3
matrix with values ranging from 0 to 8. (★☆☆)
mA = reshape(0:8, 3, 3)
3×3 reshape(::UnitRange{Int64}, 3, 3) with eltype Int64:
0 3 6
1 4 7
2 5 8
Another way would be:
mA = Matrix{Float64}(undef, 3, 3);
mA[:] = 0:8;
Find indices of non zero elements from [1, 2, 0, 0, 4, 0]
. (★☆☆)
findall(!iszero, [1, 2, 0, 0, 4, 0])
3-element Vector{Int64}:
1
2
5
Create a 3x3 identity matrix. (★☆☆)
mA = I(3)
3×3 LinearAlgebra.Diagonal{Bool, Vector{Bool}}:
1 ⋅ ⋅
⋅ 1 ⋅
⋅ ⋅ 1
An alternative method (Explicit matrix) would be:
mA = Matrix(I, 3, 3) #<! For Float64: Matrix{Float64}(I, 3, 3)
3×3 Matrix{Bool}:
1 0 0
0 1 0
0 0 1
Create a 2x2x2
array with random values. (★☆☆)
mA = randn(2, 2, 2)
2×2×2 Array{Float64, 3}:
[:, :, 1] =
-1.34961 -0.225955
0.116267 1.03802
[:, :, 2] =
0.737672 2.2642
-0.839961 0.218133
Create a 5x5
array with random values and find the minimum and maximum values. (★☆☆)
mA = rand(5, 5);
minVal = minimum(mA)
0.02305480092860468
maxVal = maximum(mA)
0.9708814560256962
Using extrema()
one could get both values at once:
minVal, maxVal = extrema(mA);
Create a random vector of size 30 and find the mean value. (★☆☆)
meanVal = mean(randn(30))
-0.04218053798839749
Create a 2d array with 1 on the border and 0 inside. (★☆☆)
mA = zeros(4, 4);
mA[:, [1, end]] .= 1;
mA[[1, end], :] .= 1;
mA
4×4 Matrix{Float64}:
1.0 1.0 1.0 1.0
1.0 0.0 0.0 1.0
1.0 0.0 0.0 1.0
1.0 1.0 1.0 1.0
An alternative way (Different dimensions):
mA = ones(4, 5);
mA[2:(end - 1), 2:(end - 1)] .= 0;
Using one line code:
mA = zeros(4, 5);
mA[[LinearIndices(mA)[cartIdx] for cartIdx in CartesianIndices(mA) if (any(cartIdx.I .== 1) || cartIdx.I[1] == size(mA, 1) || cartIdx.I[2] == size(mA, 2))]] .= 1;
By Tomer Arnon:
numRows = 5;
numCols = 4;
mA = Int[ii ∈ (1, numRows) || jj ∈ (1, numCols) for ii in 1:numRows, jj in 1:numCols];
Add a border of zeros around the array. (★☆☆)
mB = zeros(size(mA) .+ 2);
mB[2:(end - 1), 2:(end - 1)] = mA;
mB
7×6 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0 1.0 0.0
0.0 1.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 1.0 0.0
0.0 1.0 0.0 0.0 1.0 0.0
0.0 1.0 1.0 1.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
Evaluate the following expressions. (★☆☆)
0 * NaN
NaN
NaN == NaN
false
Inf > NaN
false
NaN - NaN
NaN
NaN in [NaN]
false
0.3 == 3 * 0.1
false
Create a 5x5
matrix with values [1, 2, 3, 4]
just below the diagonal. (★☆☆)
mA = diagm(5, 5, -1 => 1:4)
5×5 Matrix{Int64}:
0 0 0 0 0
1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
Create a 8x8
matrix and fill it with a checkerboard pattern. (★☆☆)
mA = zeros(8, 8);
mA[2:2:end, 1:2:end] .= 1;
mA[1:2:end, 2:2:end] .= 1;
mA
8×8 Matrix{Float64}:
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0
By Tomer Arnon (/~https://github.com/tomerarnon):
mA = Int[isodd(ii + jj) for ii in 1:8, jj in 1:8];
Convert the linear index 100 to a Cartesian Index of a size (6,7,8)
. (★☆☆)
mA = rand(6, 7, 8);
cartIdx = CartesianIndices(mA)[100]; #<! See https://discourse.julialang.org/t/14666
mA[cartIdx] == mA[100]
true
Create a checkerboard 8x8
matrix using the repeat()
function. (★☆☆)
mA = repeat([0 1; 1 0], 4, 4)
8×8 Matrix{Int64}:
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
Normalize a 4x4
random matrix. (★☆☆)
mA = rand(4, 4);
mA .= (mA .- mean(mA)) ./ std(mA) #<! Pay attention that `@.` will yield error (`std()` and `mean()`)
4×4 Matrix{Float64}:
-1.0589 0.696722 0.474169 0.0807478
1.33922 1.23329 -0.559528 -1.24305
-0.652489 0.919517 1.16875 -1.49035
-0.0565761 0.0550669 0.711533 -1.61812
Create a custom type that describes a color as four unsigned bytes (RGBA
). (★☆☆)
struct sColor
R::UInt8;
G::UInt8;
B::UInt8;
A::UInt8;
end
sMyColor = sColor(rand(UInt8, 4)...)
Main.var"##312".sColor(0xb0, 0xae, 0x35, 0x81)
Multiply a 2x4
matrix by a 4x3
matrix. (★☆☆)
mA = rand(2, 4) * randn(4, 3)
2×3 Matrix{Float64}:
-1.47402 -1.10919 -1.22996
-0.745242 0.188422 -3.19746
Given a 1D array, negate all elements which are between 3 and 8, in place. (★☆☆)
vA = rand(1:10, 8);
map!(x -> ((x > 3) && (x < 8)) ? -x : x, vA, vA)
8-element Vector{Int64}:
-6
3
1
-4
3
-4
-5
-4
Julia allows Math like notation as well (See Q0027
):
vA = rand(1:10, 8);
map!(x -> 3 < x < 8 ? -x : x, vA, vA)
8-element Vector{Int64}:
-7
-6
-4
1
-6
10
8
-5
Using logical indices one could use:
vA[3 .< vA .< 8] .*= -1;
Sum the array 1:4
with initial value of -10. (★☆☆)
sum(1:4, init = -10)
0
Consider an integer vector vZ
validate the following expressions. (★☆☆)
vZ .^ vZ
2 << vZ >> 2
vZ <- vZ
1im * vZ
vZ / 1 / 1
vZ < Z > Z
vZ = rand(1:10, 3);
vZ .^ vZ
3-element Vector{Int64}:
387420489
387420489
46656
try
2 << vZ >> 2
catch e
println(e)
end
MethodError(<<, (2, [9, 9, 6]), 0x0000000000007f1f)
vZ <- vZ
false
1im * vZ
3-element Vector{Complex{Int64}}:
0 + 9im
0 + 9im
0 + 6im
vZ / 1 / 1
3-element Vector{Float64}:
9.0
9.0
6.0
vZ < vZ > vZ
false
Evaluate the following expressions. (★☆☆)
[0] ./ [0]
1-element Vector{Float64}:
NaN
try
[0] .÷ [0]
catch e
println(e)
end
DivideError()
try
convert(Float, convert(Int, NaN))
catch e
println(e)
end
InexactError(:Int64, Int64, NaN)
Round away from zero a float array. (★☆☆)
vA = randn(10);
map(x -> x > 0 ? ceil(x) : floor(x), vA)
10-element Vector{Float64}:
1.0
-1.0
-1.0
-1.0
2.0
-1.0
2.0
2.0
2.0
1.0
Find common values between two arrays. (★☆☆)
vA = rand(1:10, 6);
vB = rand(1:10, 6);
vA[findall(in(vB), vA)]
2-element Vector{Int64}:
7
5
Suppress Julia's warnings. (★☆☆)
One could use Suppressor.jl.
Compare sqrt(-1)
and sqrt(-1 + 0im)
. (★☆☆)
try
sqrt(-1)
catch e
println(e)
end
DomainError(-1.0, "sqrt will only return a complex result if called with a complex argument. Try sqrt(Complex(x)).")
sqrt(-1 + 0im)
0.0 + 1.0im
Display yesterday, today and tomorrow's date. (★☆☆)
println("Yesterday: $(today() - Day(1))");
println("Today: $(today())");
println("Tomorrow: $(today() + Day(1))");
Yesterday: 2022-10-26
Today: 2022-10-27
Tomorrow: 2022-10-28
Display all the dates corresponding to the month of July 2016. (★★☆)
collect(Date(2016,7,1):Day(1):Date(2016,7,31))
31-element Vector{Dates.Date}:
2016-07-01
2016-07-02
2016-07-03
2016-07-04
2016-07-05
2016-07-06
2016-07-07
2016-07-08
2016-07-09
2016-07-10
2016-07-11
2016-07-12
2016-07-13
2016-07-14
2016-07-15
2016-07-16
2016-07-17
2016-07-18
2016-07-19
2016-07-20
2016-07-21
2016-07-22
2016-07-23
2016-07-24
2016-07-25
2016-07-26
2016-07-27
2016-07-28
2016-07-29
2016-07-30
2016-07-31
Compute ((mA + mB) * (-mA / 2))
in place. (★★☆)
mA = rand(2, 2);
mB = rand(2, 2);
mA .= ((mA .+ mB) .* (.-mA ./ 2))
2×2 Matrix{Float64}:
-0.35038 -0.685683
-0.510546 -0.444504
Using the dot macro:
@. mA = ((mA + mB) * (-mA / 2));
Extract the integer part of a random array of positive numbers using 4 different methods. (★★☆)
mA = 5 * rand(3, 3);
Option 1:
floor.(mA)
3×3 Matrix{Float64}:
0.0 0.0 4.0
2.0 3.0 4.0
0.0 3.0 3.0
Option 2:
round.(mA .- 0.5) #<! Generates -0.0 for numbers smaller than 0.5
3×3 Matrix{Float64}:
0.0 0.0 4.0
2.0 3.0 4.0
-0.0 3.0 3.0
Option 3:
mA .÷ 1
3×3 Matrix{Float64}:
0.0 0.0 4.0
2.0 3.0 4.0
0.0 3.0 3.0
Option 4:
mA .- rem.(mA, 1)
3×3 Matrix{Float64}:
0.0 0.0 4.0
2.0 3.0 4.0
0.0 3.0 3.0
Create a 5x5
matrix with row values ranging from 0 to 4. (★★☆)
mA = repeat(reshape(0:4, 1, 5), 5, 1)
5×5 Matrix{Int64}:
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
One could also generate row like range using tranpose:
mA = repeat((0:4)', 5, 1);
Generate an array using a generator of 10 numbers. (★☆☆)
vA = collect(x for x in 1:10)
10-element Vector{Int64}:
1
2
3
4
5
6
7
8
9
10
In Julia the result of collect can be achieved directly using Array Comprehension:
vA = [x for x in 1:10];
Create a vector of size 10 with values ranging from 0 to 1, both excluded. (★★☆)
vA = LinRange(0, 1, 12)[2:(end - 1)]
10-element LinRange{Float64, Int64}:
0.0909091,0.181818,0.272727,0.363636,…,0.636364,0.727273,0.818182,0.909091
Create a random vector of size 10 and sort it. (★★☆)
vA = rand(1:10, 10);
sort(vA) #<! Use `sort!()` for inplace sorting
10-element Vector{Int64}:
1
3
3
4
4
4
7
8
9
10
Implement the sum()
function manually. (★★☆)
vA = rand(100);
function MySum(vA::Vector{T}) where{T <: Number}
sumVal = vA[1];
for ii in 2:length(vA)
sumVal += vA[ii];
end
return sumVal;
end
MySum(vA)
51.34991384741698
Check for equality of 2 arrays. (★★☆)
vA = rand(10);
vB = rand(10);
all(vA .== vB)
false
Make an array immutable (Read only). (★★☆)
This is a work in progress for Julia at in Issue 31630.
Consider a random 10x2
matrix representing cartesian coordinates, convert them to polar coordinates. (★★☆)
mA = rand(10, 2);
ConvToPolar = vX -> [hypot(vX[1], vX[2]), atan(vX[2], vX[1])]
mB = [ConvToPolar(vX) for vX in eachrow(mA)]
10-element Vector{Vector{Float64}}:
[0.9505364569557584, 0.031648622825633764]
[0.704392126760974, 0.5147716023358581]
[0.29679995764188105, 1.201649642883764]
[0.637435149299262, 0.02987122275134911]
[0.933745980010277, 0.7244055260446777]
[0.9187482092583683, 0.36651502794834323]
[1.0164226188075605, 0.9581226557842126]
[0.5946171056720952, 1.4392243895565575]
[0.7889136757232136, 0.2964469880257975]
[1.044698619009772, 0.8754548962664869]
In order to have the same output size:
mC = reduce(hcat, mB)';
Create random vector of size 10 and replace the maximum value by 0. (★★☆)
vA = randn(10);
In case of a single maximum or all different values:
vA[argmax(vA)] = 0;
vA
10-element Vector{Float64}:
0.15593661212531384
0.8177229521444311
-1.4850097210409072
0.0
0.8552383451908633
1.476127811761641
0.2407698166125247
-0.6363509339561092
-0.5514594178114751
0.8756142494364301
General solution:
maxVal = maximum(vA);
vA .= (valA == maxVal ? 0 : valA for valA in vA); #<! Non allocating generator by using `.=`
Create a a grid of x
and y
coordinates covering the [0, 1] x [0, 1]
area. (★★☆)
numGridPts = 5;
vX = LinRange(0, 1, numGridPts);
vY = LinRange(0, 1, numGridPts);
MeshGrid = (vX, vY) -> ([x for _ in vY, x in vX], [y for y in vY, _ in vX]);
mX, mY = MeshGrid(vX, vY); #<! See https://discourse.julialang.org/t/48679
@show mX
5×5 Matrix{Float64}:
0.0 0.25 0.5 0.75 1.0
0.0 0.25 0.5 0.75 1.0
0.0 0.25 0.5 0.75 1.0
0.0 0.25 0.5 0.75 1.0
0.0 0.25 0.5 0.75 1.0
@show mY
5×5 Matrix{Float64}:
0.0 0.0 0.0 0.0 0.0
0.25 0.25 0.25 0.25 0.25
0.5 0.5 0.5 0.5 0.5
0.75 0.75 0.75 0.75 0.75
1.0 1.0 1.0 1.0 1.0
By Tomer Arnon:
mXY = [(ii, jj) for ii in 0:0.25:1, jj in 0:0.25:1]; #<! Also `tuple.(0:0.25:1, (0:0.25:1)')`
Given two vectors, vX
and vY
, construct the Cauchy matrix mC
: (Cij = 1 / (xi - yj))
. (★★☆)
vX = rand(5);
vY = rand(5);
mC = 1 ./ (vX .- vY')
5×5 Matrix{Float64}:
21.646 3.23455 34.1025 3.79522 -3.10044
12.1532 2.89647 15.2886 3.33807 -3.49101
5.11271 2.18076 5.59545 2.422 -5.77562
27.6005 3.34229 51.6618 3.94442 -3.00751
2.36374 1.45768 2.46193 1.56164 18.4072
Print the minimum and maximum representable value for each Julia scalar type. (★★☆)
vT = [UInt8 UInt16 UInt32 UInt64 Int8 Int16 Int32 Int64 Float16 Float32 Float64]
for juliaType in vT
println(typemin(juliaType));
println(typemax(juliaType));
end
0
255
0
65535
0
4294967295
0
18446744073709551615
-128
127
-32768
32767
-2147483648
2147483647
-9223372036854775808
9223372036854775807
-Inf
Inf
-Inf
Inf
-Inf
Inf
Print all the values of an array. (★★☆)
mA = rand(3, 3);
print(mA);
[0.6807535316053605 0.849791747148149 0.32690265736495716; 0.9773227682466125 0.5276250185081583 0.9071015474523568; 0.3192975731085147 0.009594822627075117 0.21726819354916904]
Find the closest value to a given scalar in a vector. (★★☆)
inputVal = 0.5;
vA = rand(10);
vA[argmin(abs.(vA .- inputVal))]
0.5023858297186229
By Tomer Arnon:
function ClosestValue(vA::Vector{T}, inputVal::T) where{T <: Number}
return argmin(y -> abs(y - inputVal), vA);
end
ClosestValue(vA, inputVal)
0.5023858297186229
Create a structured array representing a position (x, y)
and a color (r, g, b)
. (★★☆)
struct sPosColor
x::Int
y::Int
R::UInt8;
G::UInt8;
B::UInt8;
A::UInt8;
end
numPixels = 10;
maxVal = typemax(UInt32);
vMyColor = [sPosColor(rand(1:maxVal, 2)..., rand(UInt8, 4)...) for _ in 1:numPixels];
Consider a random vector with shape (5, 2)
representing coordinates, find the distances matrix mD
: $ {D}{i, j} = {\left| {x}{i} - {x}{j} \right|}{2} $. (★★☆)
mX = rand(5, 2);
vSumSqr = sum(vX -> vX .^ 2, mX, dims = 2);
mD = vSumSqr .+ vSumSqr' - 2 * (mX * mX');
mD #<! Apply `sqrt.()` for the actual norm
5×5 Matrix{Float64}:
-4.44089e-16 0.135171 0.729876 0.724544 0.525945
0.135171 0.0 0.539868 0.255352 0.136451
0.729876 0.539868 -1.38778e-17 0.403845 0.814356
0.724544 0.255352 0.403845 0.0 0.135001
0.525945 0.136451 0.814356 0.135001 -4.44089e-16
Convert a float (32 bits) array into an integer (32 bits) in place. (★★☆)
vA = 9999 .* rand(Float32, 5);
vB = reinterpret(Int32, vA); #<! Creates a view
@. vB = trunc(Int32, vA) #<! Updates the byes in th view (Inplace for `vA`)
5-element reinterpret(Int32, ::Vector{Float32}):
8898
1815
6821
6523
9953
The above is equivalent of:
for ii in eachindex(vB)
vB[ii] = trunc(Int32, vA[ii]);
end
vB
Read the following file (Q0054.txt
). (★★☆)
1, 2, 3, 4, 5
6, , , 7, 8
, , 9,10,11
mA = readdlm("Q0054.txt", ',')
3×5 Matrix{Any}:
1 2 3 4 5
6 " " " " 7 8
" " " " 9 10 11
Enumerate array in a loop. (★★☆)
mA = rand(3, 3);
for (elmIdx, elmVal) in enumerate(mA) #<! See https://discourse.julialang.org/t/48877
println(elmIdx);
println(elmVal);
end
1
0.7028850425818378
2
0.9169645026836734
3
0.887675432103485
4
0.6988267487719038
5
0.7143993871851885
6
0.8303140449034555
7
0.43387559304673373
8
0.13163225199507878
9
0.6590727215475687
Generate a generic 2D Gaussian like array with μ = 0
, σ = 1
and indices over {-5, -4, ..., 0, 1, ..., 5}
. (★★☆)
vA = -5:5;
μ = 0;
σ = 1;
mG = [(1 / (2 * pi * σ)) * exp(-0.5 * ((([x, y] .- μ)' * ([x, y] .- μ)) / (σ * σ))) for x in vA, y in vA];
heatmap(mG)
┌───────────┐
11 │▄▄▄▄▄▄▄▄▄▄▄│ ┌──┐ 0.2
│▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
1 │▄▄▄▄▄▄▄▄▄▄▄│ └──┘ 2.0e-12
└───────────┘
1 11
Using the separability of the Gaussian function:
vG = (1 / (sqrt(2 * pi) * σ)) .* exp.(-0.5 .* (((vA .- μ) .^ 2) / (σ * σ)));
mG = vG * vG';
Place 5
elements in a 5x5
array randomly. (★★☆)
mA = rand(5, 5);
mA[rand(1:25, 5)] = rand(5);
Another option which avoids setting into the same indices:
mA[randperm(25)[1:5]] = rand(5);
Subtract the mean of each row of a matrix. (★★☆)
mA = rand(3, 3);
mA .-= mean(mA, dims = 2);
mean(mA, dims = 1)
1×3 Matrix{Float64}:
0.261517 -0.0218978 -0.23962
Sort an array by a column. (★★☆)
colIdx = 2;
mA = rand(3, 3);
mA[sortperm(mA[:, colIdx]), :]
3×3 Matrix{Float64}:
0.870197 0.229455 0.462788
0.812345 0.61344 0.0990058
0.271644 0.722126 0.182457
Using sortslices()
:
sortslices(mA, dims = 1, by = x -> x[colIdx]);
Tell if a given 2D array has null (All zeros) columns. (★★☆)
mA = rand(0:1, 3, 9);
any(all(iszero.(mA), dims = 1))
false
Find the 2nd nearest value from a given value in an array. (★★☆)
inputVal = 0.5;
vA = rand(10);
vA[sortperm(abs.(vA .- inputVal))[2]]
0.5947029703004421
Alternative way (More efficient)
closeFirst = Inf;
closeSecond = Inf;
closeFirstIdx = 0;
closeSecondIdx = 0;
# Using `global` for scope in Literate
for (elmIdx, elmVal) in enumerate(abs.(vA .- inputVal))
if (elmVal < closeFirst)
global closeSecond = closeFirst;
global closeFirst = elmVal;
global closeSecondIdx = closeFirstIdx;
global closeFirstIdx = elmIdx;
elseif (elmVal < closeSecond)
global closeSecond = elmVal;
global closeSecondIdx = elmIdx;
end
end
vA[closeSecondIdx] == vA[sortperm(abs.(vA .- inputVal))[2]]
true
By Tomer Arnon:
vA[partialsortperm(abs.(vA .- inputVal), 2)]
0.5947029703004421
Considering two arrays with shape (1, 3)
and (3, 1)
, Compute their sum using an iterator. (★★☆)
vA = rand(1, 3);
vB = rand(3, 1);
sum(aVal + bVal for aVal in vA, bVal in vB)
11.149909948305584
Create an array class that has a name attribute. (★★☆)
One could use NamedArrays.jl
or AxisArrays.jl
.
Given a vector, add 1
to each element indexed by a second vector (Be careful with repeated indices). (★★★)
vA = rand(1:10, 5);
vB = rand(1:5, 3);
println(vA);
# Julia is very efficient with loops
for bIdx in vB
vA[bIdx] += 1;
end
println(vA);
[1, 6, 2, 6, 2]
[3, 7, 2, 6, 2]
Accumulate elements of a vector X
to an array F
based on an index list I
. (★★★)
vX = rand(1:5, 10);
vI = rand(1:15, 10);
numElements = maximum(vI);
vF = zeros(numElements);
for (ii, iIdx) in enumerate(vI)
vF[iIdx] += vX[ii];
end
println("vX: $vX");
println("vI: $vI");
println("vF: $vF");
vX: [5, 4, 3, 5, 2, 5, 2, 5, 5, 1]
vI: [3, 2, 6, 11, 12, 10, 5, 11, 12, 2]
vF: [0.0, 5.0, 5.0, 0.0, 2.0, 3.0, 0.0, 0.0, 0.0, 5.0, 10.0, 7.0]
One could also use counts()
from StatsBase.jl
.
Considering an image of size w x h x 3
image of type UInt8
, compute the number of unique colors. (★★☆)
mI = rand(UInt8, 1000, 1000, 3);
numColors = length(unique([reinterpret(UInt32, [iPx[1], iPx[2], iPx[3], 0x00])[1] for iPx in eachrow(reshape(mI, :, 3))])); #<! Reshaping as at the moment `eachslice()` doesn't support multiple `dims`.
print("Number of Unique Colors: $numColors");
Number of Unique Colors: 970711
Another option:
numColors = length(unique([UInt32(iPx[1]) + UInt32(iPx[2]) << 8 + UInt32(iPx[3]) << 16 for iPx in eachrow(reshape(mI, :, 3))]));
print("Number of Unique Colors: $numColors");
Number of Unique Colors: 970711
Simpler way to slice a pixel:
numColors = length(unique([UInt32(mI[ii, jj, 1]) + UInt32(mI[ii, jj, 2]) << 8 + UInt32(mI[ii, jj, 3]) << 16 for ii in 1:size(mI, 1), jj in 1:size(mI, 2)]));
print("Number of Unique Colors: $numColors");
Number of Unique Colors: 970711
Considering a four dimensions array, get sum over the last two axis at once. (★★★)
mA = rand(2, 2, 2, 2);
sum(reshape(mA, (2, 2, :)), dims = 3)
2×2×1 Array{Float64, 3}:
[:, :, 1] =
1.817 1.16234
2.44291 2.32796
Considering a one dimensional vector vA
, how to compute means of subsets of vA
using a vector vS
of same size describing subset indices. (★★★)
# Bascially extending `Q0065` with another vector of number of additions.
vX = rand(1:5, 10);
vI = rand(1:15, 10);
numElements = maximum(vI);
vF = zeros(numElements);
vN = zeros(Int, numElements);
for (ii, iIdx) in enumerate(vI)
vF[iIdx] += vX[ii];
vN[iIdx] += 1;
end
# We only divide the mean if the number of elements accumulated is bigger than 1
for ii in 1:numElements
vF[ii] = ifelse(vN[ii] > 1, vF[ii] / vN[ii], vF[ii]);
end
println("vX: $vX");
println("vI: $vI");
println("vF: $vF");
vX: [5, 5, 4, 2, 1, 1, 3, 5, 3, 2]
vI: [14, 7, 8, 10, 5, 10, 14, 2, 7, 13]
vF: [0.0, 5.0, 0.0, 0.0, 1.0, 0.0, 4.0, 4.0, 0.0, 1.5, 0.0, 0.0, 2.0, 4.0]
Get the diagonal of a matrix product. (★★★)
mA = rand(5, 7);
mB = rand(7, 4);
numDiagElements = min(size(mA, 1), size(mB, 2));
vD = [dot(mA[ii, :], mB[:, ii]) for ii in 1:numDiagElements]
4-element Vector{Float64}:
1.8937792321469207
1.035584608236753
2.0251852803210024
2.2065505485118653
Alternative way:
vD = reshape(sum(mA[1:numDiagElements, :]' .* mB[:, 1:numDiagElements], dims = 1), numDiagElements)
4-element Vector{Float64}:
1.8937792321469207
1.035584608236753
2.0251852803210024
2.2065505485118653
Consider the vector [1, 2, 3, 4, 5]
, build a new vector with 3 consecutive zeros interleaved between each value. (★★★)
vA = 1:5;
# Since Julia is fast with loops, it would be the easiest choice
numElements = (4 * length(vA)) - 3;
vB = zeros(Int, numElements);
for (ii, bIdx) in enumerate(1:4:numElements)
vB[bIdx] = vA[ii];
end
println(vB);
# Alternative (MATLAB style) way:
mB = [reshape(collect(vA), 1, :); zeros(Int, 3, length(vA))];
vB = reshape(mB[1:(end - 3)], :);
println(vB);
[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5]
[1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5]
Consider an array of dimension 5 x 5 x 3
, mulitply it by an array with dimensions 5 x 5
using broadcasting. (★★★)
mA = rand(5, 5, 3);
mB = rand(5, 5);
mA .* mB #<! Very easy in Julia
5×5×3 Array{Float64, 3}:
[:, :, 1] =
0.492335 0.301617 0.0158155 0.411494 0.0331824
0.555254 0.148368 0.111992 0.366332 0.192798
0.104442 0.249306 0.0138448 0.018588 0.721434
0.665075 0.136419 0.00305929 0.430373 0.208216
0.290075 0.642668 0.519127 0.511527 0.151719
[:, :, 2] =
0.234647 0.447608 0.000903852 0.00299349 0.0626502
0.0159529 0.164814 0.0807125 0.27415 0.180858
0.103613 0.291711 0.00759939 0.013771 0.11713
0.314552 0.210101 0.00966737 0.343302 0.377711
0.129541 0.642804 0.833245 0.372239 0.816422
[:, :, 3] =
0.774094 0.181579 0.0151706 0.26963 0.0364216
0.167574 0.0016081 0.0130672 0.823491 0.398857
0.062678 0.40945 0.00790564 0.0141378 0.468662
0.344903 0.18419 0.00697708 0.487335 0.504131
0.118821 0.0130137 0.803091 0.754898 0.0470187
Swap two rows of a 2D array. (★★★)
mA = rand(UInt8, 3, 2);
println(mA);
mA[[1, 2], :] .= mA[[2, 1], :];
println(mA);
UInt8[0xc7 0x2f; 0xbf 0x8f; 0xac 0x2a]
UInt8[0xbf 0x8f; 0xc7 0x2f; 0xac 0x2a]
Consider a set of 10 triplets describing 10 triangles (with shared vertices), find the set of unique line segments composing all the triangles. (★★★)
mA = rand(0:100, 10, 3); #<! Each row composes 3 veritces ([1] -> [2], [2] -> [3], [3] -> [1])
mC = [sort!([vC[mod1(ii, end)], vC[mod1(ii + 1, end)]]) for ii in 1:(size(mA, 2) + 1), vC in eachrow(mA)][:] #<! Sorted combinations of vertices
mC = unique(mC)
30-element Vector{Vector{Int64}}:
[52, 86]
[23, 86]
[23, 52]
[53, 88]
[53, 95]
[88, 95]
[4, 31]
[4, 24]
[24, 31]
[34, 80]
[34, 99]
[80, 99]
[19, 69]
[19, 21]
[21, 69]
[38, 74]
[36, 74]
[36, 38]
[18, 20]
[20, 48]
[18, 48]
[0, 23]
[23, 77]
[0, 77]
[23, 42]
[42, 75]
[23, 75]
[20, 69]
[7, 69]
[7, 20]
Given a sorted array vC
that corresponds to a bincount, produce an array vA
such that bincount(vA) == vC
. (★★★)
vC = rand(0:7, 5);
numElements = sum(vC);
vA = zeros(Int, numElements);
elmIdx = 1;
# Using `global` for scope in Literate
for (ii, binCount) in enumerate(vC)
for jj in 1:binCount
vA[elmIdx] = ii;
global elmIdx += 1;
end
end
Compute averages using a sliding window over an array. (★★★)
numElements = 10;
winRadius = 1;
winReach = 2 * winRadius;
winLength = 1 + winReach;
vA = rand(0:3, numElements);
vB = zeros(numElements - (2 * winRadius));
aIdx = 1 + winRadius;
# Using `global` for scope in Literate
for ii in 1:length(vB)
vB[ii] = mean(vA[(aIdx - winRadius):(aIdx + winRadius)]); #<! Using integral / running sum it would be faster.
global aIdx += 1;
end
Another method using running sum:
vC = zeros(numElements - winReach);
jj = 1;
sumVal = sum(vA[1:winLength]);
vC[jj] = sumVal / winLength;
jj += 1;
# Using `global` for scope in Literate
for ii in 2:(numElements - winReach)
global sumVal += vA[ii + winReach] - vA[ii - 1];
vC[jj] = sumVal / winLength;
global jj += 1;
end
maximum(abs.(vC - vB)) < 1e-8
true
Consider a one dimensional array vA
, build a two dimensional array whose first row is [ vA[0], vA[1], vA[2] ]
and each subsequent row is shifted by 1. (★★★)
vA = rand(10);
numCols = 3;
numRows = length(vA) - numCols + 1;
mA = zeros(numRows, numCols);
for ii in 1:numRows
mA[ii, :] = vA[ii:(ii + numCols - 1)]; #<! One could optimize the `-1` out
end
Negate a boolean or to change the sign of a float inplace. (★★★)
vA = rand(Bool, 10);
vA .= .!vA;
vA = randn(10);
vA .*= -1;
Consider 2 sets of points mP1
, mP2
describing lines (2d) and a point vP
, how to compute distance from the point vP
to each line i
: [mP1[i, :], mP2[i, :]
. (★★★)
# See distance of a point from a line in Wikipedia (https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_line).
# Specifically _Line Defined by Two Points_.
numLines = 10;
mP1 = randn(numLines, 2);
mP2 = randn(numLines, 2);
vP = randn(2);
vD = [(abs(((vP2[1] - vP1[1]) * (vP1[2] - vP[2])) - ((vP1[1] - vP[1]) * (vP2[2] - vP1[2]))) / hypot((vP2 - vP1)...)) for (vP1, vP2) in zip(eachrow(mP1), eachrow(mP2))];
minDist = minimum(vD);
println("Min Distance: $minDist");
Min Distance: 0.42811311783896533
Consider 2 sets of points mP1
, mP2
describing lines (2d) and a set of points mP
, how to compute distance from the point vP = mP[j, :]
to each line i
: [mP1[i, :], mP2[i, :]
. (★★★)
numLines = 5;
mP1 = randn(numLines, 2);
mP2 = randn(numLines, 2);
mP = randn(numLines, 2);
mD = [(abs(((vP2[1] - vP1[1]) * (vP1[2] - vP[2])) - ((vP1[1] - vP[1]) * (vP2[2] - vP1[2]))) / hypot((vP2 - vP1)...)) for (vP1, vP2) in zip(eachrow(mP1), eachrow(mP2)), vP in eachrow(mP)];
for jj in 1:numLines
minDist = minimum(mD[jj, :]);
println("The minimum distance from the $jj -th point: $minDist");
end
┌ Warning: Assignment to `minDist` in soft scope is ambiguous because a global variable by the same name exists: `minDist` will be treated as a new local. Disambiguate by using `local minDist` to suppress this warning or `global minDist` to assign to the existing global variable.
└ @ string:9
The minimum distance from the 1 -th point: 0.33333028326949365
The minimum distance from the 2 -th point: 0.09596286876613971
The minimum distance from the 3 -th point: 0.15987404532559377
The minimum distance from the 4 -th point: 0.09922388894592074
The minimum distance from the 5 -th point: 0.0701461047753776
Consider an arbitrary 2D array, write a function that extract a subpart with a fixed shape and centered on a given element (Handel out of bounds). (★★★)
# One could use `PaddedViews.jl` to easily solve this.
arrayLength = 10;
winRadius = 3;
vWinCenter = [7, 9];
mA = rand(arrayLength, arrayLength);
winLength = (2 * winRadius) + 1;
mB = zeros(winLength, winLength);
verShift = -winRadius;
# Using `global` for scope in Literate
for ii in 1:winLength
horShift = -winRadius;
for jj in 1:winLength
mB[ii, jj] = mA[min(max(vWinCenter[1] + verShift, 1), arrayLength), min(max(vWinCenter[2] + horShift, 1), arrayLength)]; #<! Nearest neighbor extrapolation
horShift += 1;
end
global verShift += 1;
end
Consider an array vA = [1, 2, 3, ..., 13, 14]
, generate an array vB = [[1, 2, 3, 4], [2, 3, 4, 5], [3, 4, 5, 6], ..., [11, 12, 13, 14]]
. (★★★)
vA = collect(1:14);
winNumElements = 4;
winReach = winNumElements - 1;
vB = [vA[ii:(ii + winReach)] for ii in 1:(length(vA) - winReach)]
11-element Vector{Vector{Int64}}:
[1, 2, 3, 4]
[2, 3, 4, 5]
[3, 4, 5, 6]
[4, 5, 6, 7]
[5, 6, 7, 8]
[6, 7, 8, 9]
[7, 8, 9, 10]
[8, 9, 10, 11]
[9, 10, 11, 12]
[10, 11, 12, 13]
[11, 12, 13, 14]
Compute a matrix rank. (★★★)
numRows = 5;
numCols = 4;
mA = randn(numRows, numCols);
rank(mA)
4
Find the most frequent value in an array. (★★★)
vA = rand(1:5, 15);
MATLAB Style (Manual loop might be faster)
vB = unique(vA);
# vB[argmax(sum(vA .== vB', dims = 1)[:])] #<! The input to `argmax()` is a `1 x n` vector, hence squeezed so `argmax()` won't return Cartesian Index.
vB[argmax(dropdims(sum(vA .== vB', dims = 1), dims = 1))] #<! The input to `argmax()` is a `1 x n` vector, hence squeezed so `argmax()` won't return Cartesian Index.
1
Comparing bits:
One could convert at the bits level to integers and then use something like counts()
from StatsBase.jl
.
Support to 1:4 bytes of data:
numBytes = sizeof(vA[1]);
if (sizeof(vA[1]) == 1)
vB = reinterpret(UInt8, vA);
elseif (sizeof(vA[1]) == 2)
vB = reinterpret(UInt16, vA);
elseif (sizeof(vA[1]) == 4)
vB = reinterpret(UInt32, vA);
elseif (sizeof(vA[1]) == 8)
vB = reinterpret(UInt64, vA);
end
Extract all the contiguous 3x3
blocks from a random 5x5
matrix. (★★★)
numRows = 5;
numCols = 5;
mA = rand(1:9, numRows, numCols);
winRadius = 1;
winReach = 2 * winRadius;
winLength = winReach + 1;
mB = [mA[ii:(ii + winReach), jj:(jj + winReach)] for ii in 1:(numRows - winReach), jj in 1:(numCols - winReach)]
3×3 Matrix{Matrix{Int64}}:
[9 1 1; 3 1 2; 9 4 6] [1 1 4; 1 2 2; 4 6 2] [1 4 7; 2 2 1; 6 2 2]
[3 1 2; 9 4 6; 4 2 1] [1 2 2; 4 6 2; 2 1 7] [2 2 1; 6 2 2; 1 7 1]
[9 4 6; 4 2 1; 2 9 8] [4 6 2; 2 1 7; 9 8 1] [6 2 2; 1 7 1; 8 1 4]
Create a 2D array struct such that mA[i, j] == mA[j, i]
(Symmetric matrix). (★★★)
struct SymmetricMatrix{T <: Number} <: AbstractArray{T, 2}
numRows::Int
data::Matrix{T}
function SymmetricMatrix(mA::Matrix{T}) where {T <: Number}
size(mA, 1) == size(mA, 2) || throw(ArgumentError("Input matrix must be square"))
new{T}(size(mA, 1), Matrix(Symmetric(mA)));
end
end
function Base.size(mA::SymmetricMatrix)
(mA.numRows, mA.numRows);
end
function Base.getindex(mA::SymmetricMatrix, ii::Int)
mA.data[ii];
end
function Base.getindex(mA::SymmetricMatrix, ii::Int, jj::Int)
mA.data[ii, jj];
end
function Base.setindex!(mA::SymmetricMatrix, v, ii::Int, jj::Int)
setindex!(mA.data, v, ii, jj);
setindex!(mA.data, v, jj, ii);
end
mA = SymmetricMatrix(zeros(Int, 2, 2));
mA[1, 2] = 5;
mA
2×2 Main.var"##312".SymmetricMatrix{Int64}:
0 5
5 0
Consider a set of p
matrices of shape nxn
and a set of p
vectors with length n
. Compute the sum of of the p
matrix vector products at once (Result is a vector of length n
). (★★★)
# One could use `TensorOperations.jl` or `Einsum.jl` for a more elegant solution.
numRows = 5;
numMat = 3;
tP = [randn(numRows, numRows) for _ in 1:numMat];
mP = [randn(numRows) for _ in 1:numMat];
vA = reduce(+, (mP * vP for (mP, vP) in zip(tP, mP)));
vB = zeros(numRows);
for ii in 1:numMat
vB .+= tP[ii] * mP[ii];
end
vA == vB
true
Consider a 16x16
array, calculate the block sum (Block size is 4x4
). (★★★)
We solve a more general case for any size of blocks.
numRows = 16;
numCols = 8;
vBlockSize = [2, 4]; #<! [numRows, numCols] ./ vBlockSize == integer
mA = rand(numRows, numCols);
numBlocksVert = numRows ÷ vBlockSize[1];
numBlocksHori = numCols ÷ vBlockSize[2];
numBlocks = numBlocksVert * numBlocksHori;
mA = reshape(mA, vBlockSize[1], :);
We number the blocks column wise and create their block index per column of the reshaped mA
.
vBlockIdx = 1:numBlocks;
mBlockIdx = reshape(vBlockIdx, numBlocksVert, numBlocksHori);
mBlockIdx = repeat(mBlockIdx, 1, 1, vBlockSize[2]);
mBlockIdx = permutedims(mBlockIdx, (1, 3, 2));
vBlockIdx = mBlockIdx[:]; #<! Matches the block index per column of the reshaped `mA`.
vA = dropdims(sum(mA, dims = 1), dims = 1);
vB = zeros(numBlocks);
for ii = 1:(numBlocks * vBlockSize[2])
vB[vBlockIdx[ii]] += vA[ii];
end
vB
16-element Vector{Float64}:
4.354231620225193
3.734856822720345
3.297606250613403
4.256409222766379
3.2941384563138993
3.776165923653995
3.600353929303568
4.518180088610547
3.6679777425586186
4.6420262282688345
4.296040312870272
5.1547123230902825
3.0214360614973477
3.202315920090961
4.669003591708878
3.3257368418156616
Implement the simulation Game of Life using arrays. (★★★)
numRows = 20;
numCols = 20;
gofKernel = @kernel w -> w[-1, -1] + w[-1, 0] + w[-1, 1] + w[0, -1] + w[0, 1] + w[1, -1] + w[1, 0] + w[1, 1];
gofNumLives = round(Int, 0.05 * numRows * numCols);
gofNumGenerations = 50;
vI = randperm(numRows * numCols)[1:gofNumLives];
mG = zeros(UInt8, numRows, numCols);
mG[vI] .= UInt8(1);
mB = similar(mG);
heatmap(mG) #<! Initialization
┌────────────────────┐
20 │▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ ┌──┐ 1
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
1 │▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ └──┘ 0
└────────────────────┘
1 20
for ii in 1:numGridPts
map!(gofKernel, mB, extend(mG, StaticKernels.ExtensionConstant(0))); #<! One may use `ExtensionCircular`
for ii in eachindex(mB)
mG[ii] = UInt8((mB[ii] >= 3) || ((mB[ii] > 0) && (mB[ii] == 2))); #<! Could be done with broadcasting
end
end
heatmap(mG) #<! Final state
┌────────────────────┐
20 │▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ ┌──┐ 1
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
│▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ │▄▄│
1 │▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄│ └──┘ 0
└────────────────────┘
1 20
TODO: Use O(1) implementation for Box Blur.
Get the n
largest values of an array. (★★★)
vA = rand(10);
numValues = 3;
vA[partialsortperm(vA, 1:numValues, rev = true)]
3-element Vector{Float64}:
0.8713271882275592
0.8486847944348448
0.8445471427655805
Given an arbitrary number of vectors, build the Cartesian Product (Every combinations of every item). (★★★)
function CartesianProduct(tupleX)
return collect(Iterators.product(tupleX...))[:];
end
vA = 1:3;
vB = 8:9;
vC = 4:5;
CartesianProduct((vA, vB, vC))
12-element Vector{Tuple{Int64, Int64, Int64}}:
(1, 8, 4)
(2, 8, 4)
(3, 8, 4)
(1, 9, 4)
(2, 9, 4)
(3, 9, 4)
(1, 8, 5)
(2, 8, 5)
(3, 8, 5)
(1, 9, 5)
(2, 9, 5)
(3, 9, 5)
Create an array which can be accessed like a record array in NumPy. (★★★)
One could use StructArrays.jl
.
Consider a large vector vA
, compute vA
to the power of 3 using 3 different methods. (★★★)
vA = rand(1000);
Method 001:
vB = vA .^ 3;
Method 002:
vC = [valA ^ 3 for valA in vA];
Method 003:
vD = zeros(length(vA));
for (ii, valA) in enumerate(vA)
vD[ii] = valA * valA * valA;
end
vB ≈ vC ≈ vD
true
Consider two arrays mA
and mB
of shape 8x3
and 2x2
. Find rows of mA
that contain elements of each row of mB
regardless of the order of the elements in mB
. (★★★)
The way I interpret the question is rows in mA
which contain at least 1 element from each row of mB
.
mA = rand(0:4, 8, 3);
mB = rand(0:4, 2, 2);
mC = [any(vA .== vB') for vB in eachrow(mB), vA in eachrow(mA)]; #<! General solution, will work for any size of `mA` and `mB`
vD = [all(vC) for vC in eachcol(mC)]
8-element Vector{Bool}:
0
1
1
1
0
0
1
1
In order to have a solution without the intermediate array mC
function Iterate2(iA; iterState = missing)
if(ismissing(iterState))
valA, iterState = iterate(iA);
else
valA, iterState = iterate(iA, iterState);
end
valB, iterState = iterate(iA, iterState);
return (valA, valB), iterState
end
tT = (any(vA .== vB') for vB in eachrow(mB), vA in eachrow(mA));
iterState = missing;
vE = zeros(Bool, size(mA, 1));
for ii = 1:length(vD)
global iterState;
(valA, valB), iterState = Iterate2(tT; iterState = iterState);
vE[ii] = valA && valB;
end
vD == vE
true
Considering a 10x3
matrix, extract rows with unequal values. (★★★)
mA = rand(1:3, 10, 3);
vD = [maximum(vA) != minimum(vA) for vA in eachrow(mA)]
10-element Vector{Bool}:
1
0
1
1
1
1
1
1
1
1
Convert a vector of ints into a matrix binary representation. (★★★)
vA = rand(UInt8, 10);
mB = zeros(Bool, length(vA), 8);
# See https://discourse.julialang.org/t/26663
for ii in 1:length(vA)
vS = bitstring(vA[ii]);
for jj in 1:size(mB, 2)
mB[ii, jj] = vS[jj] == '1';
end
end
mB
10×8 Matrix{Bool}:
0 0 1 0 1 1 1 1
1 1 0 1 1 1 0 0
0 0 0 0 1 0 1 0
1 1 1 0 0 1 0 1
0 1 0 1 0 1 0 1
0 0 0 1 0 1 1 1
1 0 0 0 1 0 1 0
1 1 0 1 1 1 0 0
0 0 1 1 1 1 0 0
1 0 0 0 0 1 0 0
By Tomer Arnon:
mB = reverse!(reduce(hcat, digits.(vA, base = 2, pad = 8))', dims = 2);
Given a two dimensional array, extract unique rows. (★★★)
mA = UInt8.(rand(1:3, 10, 3));
vS = [reduce(*, bitstring(valA) for valA in vA) for vA in eachrow(mA)]; #<! Supports any array!
vU = unique(vS);
vI = [findfirst(valU .== vS) for valU in vU];
An alternative way:
vB = indexin(vU, vS);
vB == vI
true
Considering 2 vectors vA
and vB
, write the einsum equivalent (Using Einsum.jl
) of inner, outer, sum, and mul function. (★★★)
vA = rand(5);
vB = rand(5);
Inner Product
@tullio tullioVal = vA[ii] * vB[ii];
tullioVal ≈ dot(vA, vB) #<! Inner product
true
Outer Product
@tullio mTullio[ii, jj] := vA[ii] * vB[jj]; #<! Outer product
mTullio ≈ vA * vB'
true
Sum
@tullio tullioVal = vA[ii];
tullioVal ≈ sum(vA) #<! Sum
true
Multiplication
@tullio vTullio[ii] := vA[ii] * vB[ii];
vTullio ≈ vA .* vB #<! Multiplication
true
Considering a path described by two vectors vX
and vY
, sample it using equidistant samples. (★★★)
The way I interpreted the question is to create sub segments of the same length.
numPts = 100;
numSegments = 1000;
vX = sort(10 * rand(numPts));
vY = sort(10 * rand(numPts));
vR = cumsum(hypot.(diff(vX), diff(vY)));
pushfirst!(vR, 0.0);
vRSegment = LinRange(0.0, vR[end], numSegments);
struct LinearInterpolator1D{T <: Number} <: AbstractArray{T, 1}
vX::Vector{T};
vY::Vector{T};
function LinearInterpolator1D(vX::Vector{T}, vY::Vector{T}) where {T <: Number}
length(vX) == length(vX) || throw(ArgumentError("Input vectors must have the same length"));
new{T}(vX, vY);
end
end
function Base.size(vA::LinearInterpolator1D)
size(vA.vX);
end
function Base.getindex(vA::LinearInterpolator1D, ii::Number)
if (ii >= vA.vX[end])
return vA.vY[end];
end
if (ii <= vA.vX[1])
return vA.vY[1];
end
rightIdx = findfirst(vA.vX .>= ii);
leftIdx = rightIdx - 1;
tt = (ii - vA.vX[leftIdx]) / (vA.vX[rightIdx] - vA.vX[leftIdx]);
return ((1 - tt) * vA.vY[leftIdx]) + (tt * vA.vY[rightIdx]);
end
function Base.setindex!(vA::LinearInterpolator1D, valX, valY, ii::Int, jj::Int)
setindex!(sLinInterp.vX, valX, ii);
setindex!(sLinInterp.vY, valY, ii);
end
vXInt = LinearInterpolator1D(vR, vX);
vYInt = LinearInterpolator1D(vR, vY);
vXSegment = [vXInt[intIdx] for intIdx in vRSegment];
vYSegment = [vYInt[intIdx] for intIdx in vRSegment];
hP = lineplot(vX, vY, canvas = DotCanvas, name = "Samples");
lineplot!(hP, vXSegment, vYSegment, name = "Interpolated");
hP
┌────────────────────────────────────────┐
10 │ ..:│ Samples
│ ...'' │ Interpolated
│ .:'' │
│ .: │
│ .: │
│ .:''' │
│ :' │
│ ..:' │
│ :'' │
│ ....: │
│ ..: │
│ :'''' │
│ .:'' │
│ .:' │
0 │..:' │
└────────────────────────────────────────┘
0 10
Remark: In order to be mathematically accurate the resolution of vRSegment
must be high enough to be an integer factor of each segment.
It can be done if the resolution is 1 / (prod(vR))
which is easily infeasible with Float64
. So this is a good enough approximation.
Given an integer n
and a 2D array mA
, find the rows which can be interpreted as draws from a multinomial distribution with n
(Rows which only contain integers and which sum to n
). (★★★)
mA = rand([0, 0.5, 1, 2, 3], 15, 3);
sumVal = 4;
vI = [all(vA .== round.(vA)) && sum(vA) == sumVal for vA in eachrow(mA)];
Compute bootstrapped 95%
confidence intervals for the mean of a 1D array vA
. Namely, resample the elements of an array with replacement N
times, compute the mean of each sample and then compute percentiles over the means. (★★★)
numTrials = 10000;
numSamples = 1000;
μ = 0.5;
vA = μ .+ randn(numSamples);
tM = (mean(vA[rand(1:numSamples, numSamples)]) for _ in 1:numTrials);
quantile(tM, [0.025, 0.975])
2-element Vector{Float64}:
0.4620914889349693
0.5830619321705541
This page was generated using Literate.jl.