-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSalinas-train-predict.py
439 lines (359 loc) · 17.3 KB
/
Salinas-train-predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 7 03:18:53 2023
@author: Rojan Basnet
"""
# ALL LIBRARIES
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import os
import pickle
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
import time
import utils
import models
import data_preprocess
# Hyper Parameters
# Define the hyperparameters for the experiment
feature_dimension = 160
source_input_dimension = 128
target_input_dimension = 204
n_dimension = 100
num_classes = 16
shots_per_class = 1
queries_per_class = 19
training_episodes = 20000
test_episodes = 600
learning_rate = 0.001
gpu_index = 0
hidden_units = 10
# Hyper Parameters in target domain data set
test_num_classes = 16 # the number of classes
test_labeled_samples_per_class = 5 # the number of labeled samples per class
# Set random seeds
utils.set_random_seeds(0)
# Initialize directories for saving checkpoints and classification maps
def _init_():
if not os.path.exists('checkpoints'):
os.makedirs('checkpoints')
if not os.path.exists('classificationMap'):
os.makedirs('classificationMap')
_init_()
# Load source domain dataset
with open(os.path.join('datasets', 'Chikusei_imdb_128.pickle'), 'rb') as handle:
source_imdb = pickle.load(handle)
print("Source domain dataset keys:", source_imdb.keys())
print("Source domain dataset labels:", source_imdb['Labels'])
# Process source domain dataset
data_train = source_imdb['data']
labels_train = source_imdb['Labels']
print("Source domain dataset shape:", data_train.shape)
print("Source domain dataset label shape:", labels_train.shape)
keys_all_train = sorted(list(set(labels_train)))
print("All unique labels in source domain dataset:", keys_all_train)
label_encoder_train = {}
for i in range(len(keys_all_train)):
label_encoder_train[keys_all_train[i]] = i
print("Label encoder for source domain dataset:", label_encoder_train)
train_set = {}
for class_, path in zip(labels_train, data_train):
if label_encoder_train[class_] not in train_set:
train_set[label_encoder_train[class_]] = []
train_set[label_encoder_train[class_]].append(path)
print("Classes in the source domain dataset:", train_set.keys())
data = train_set
del train_set
del keys_all_train
del label_encoder_train
print("Number of classes for source domain dataset:", len(data))
print("Classes in the source domain dataset after sanity check:", data.keys())
data = utils.filter_valid_classes(data)
print("Number of classes with more than 200 samples:", len(data))
for class_ in data:
for i in range(len(data[class_])):
image_transpose = np.transpose(data[class_][i], (2, 0, 1))
data[class_][i] = image_transpose
# Source few-shot classification data
metatrain_data = data
print("Number of classes in source few-shot classification data:", len(metatrain_data.keys()))
del data
# Source domain adaptation data
print("Source domain data shape before transpose:", source_imdb['data'].shape)
source_imdb['data'] = source_imdb['data'].transpose((1, 2, 3, 0))
print("Source domain data shape after transpose:", source_imdb['data'].shape)
print("Source domain dataset labels:", source_imdb['Labels'])
source_dataset = utils.matcifar(source_imdb, train=True, d=3, medicinal=0)
source_loader = torch.utils.data.DataLoader(source_dataset, batch_size=128, shuffle=True, num_workers=0)
del source_dataset, source_imdb
## Target domain dataset
# Load target domain dataset
test_data = 'datasets/salinas/salinas_corrected.mat'
test_label = 'datasets/salinas/salinas_gt.mat'
Data_Band_Scaler, GroundTruth = utils.load_image_data(test_data, test_label)
# Run the experiment multiple times
nDataSet = 1
acc = np.zeros([nDataSet, 1])
A = np.zeros([nDataSet, num_classes])
k = np.zeros([nDataSet, 1])
best_predict_all = []
best_acc_all = 0.0
best_G, best_RandPerm, best_Row, best_Column, best_nTrain = None, None, None, None, None
seeds = [1330, 1220, 1336, 1337, 1224, 1236, 1226, 1235, 1233, 1229]
for iDataSet in range(nDataSet):
# Load target domain data for training and testing
np.random.seed(seeds[iDataSet])
train_loader, test_loader, target_da_metatrain_data, target_loader, G, RandPerm, Row, Column, nTrain = data_preprocess.get_target_dataset(
Data_Band_Scaler=Data_Band_Scaler, GroundTruth=GroundTruth, class_num=test_num_classes, shot_num_per_class=test_labeled_samples_per_class)
# Model
feature_encoder = models.Network(feature_dimension, num_classes, target_input_dimension, source_input_dimension, n_dimension, 1, 1)
domain_classifier = models.DomainClassifier()
random_layer = models.RandomLayer([feature_dimension, num_classes], 1024)
feature_encoder.apply(models.weights_init)
domain_classifier.apply(models.weights_init)
feature_encoder.cuda()
domain_classifier.cuda()
random_layer.cuda()
feature_encoder.train()
domain_classifier.train()
# Optimizer
feature_encoder_optim = torch.optim.Adam(feature_encoder.parameters(), lr=learning_rate)
domain_classifier_optim = torch.optim.Adam(domain_classifier.parameters(), lr=learning_rate)
print("Training...")
last_accuracy = 0.0
best_episdoe = 0
train_loss = []
test_acc = []
running_D_loss, running_F_loss = 0.0, 0.0
running_label_loss = 0
running_domain_loss = 0
total_hit, total_num = 0.0, 0.0
test_acc_list = []
source_iter = iter(source_loader)
target_iter = iter(target_loader)
len_dataloader = min(len(source_loader), len(target_loader))
train_start = time.time()
for episode in range(training_episodes):
# Get domain adaptation data from source domain and target domain
try:
source_data, source_label = source_iter.__next__()
except Exception as err:
source_iter = iter(source_loader)
source_data, source_label = source_iter.__next__()
try:
target_data, target_label = target_iter.__next__()
except Exception as err:
target_iter = iter(target_loader)
target_data, target_label = target_iter.__next__()
# Source domain few-shot + domain adaptation
if episode % 2 == 0:
'''Few-shot classification for source domain dataset'''
# Get few-shot classification samples
task = utils.Task(metatrain_data, num_classes, shots_per_class, queries_per_class)
support_dataloader = utils.get_HBKC_data_loader(task, num_per_class=shots_per_class, split="train", shuffle=False)
query_dataloader = utils.get_HBKC_data_loader(task, num_per_class=queries_per_class, split="test", shuffle=True)
# Sample data
supports, support_labels = support_dataloader.__iter__().__next__()
querys, query_labels = query_dataloader.__iter__().__next__()
# Calculate features
support_features, support_outputs = feature_encoder(supports.cuda())
query_features, query_outputs = feature_encoder(querys.cuda())
target_features, target_outputs = feature_encoder(target_data.cuda(), domain='target')
# Prototype network
if shots_per_class > 1:
support_proto = support_features.reshape(num_classes, shots_per_class, -1).mean(dim=1)
else:
support_proto = support_features
# FSL loss
logits = models.pairwise_euclidean_distance(query_features, support_proto)
f_loss = models.crossEntropy(logits, query_labels.cuda())
'''Domain adaptation'''
# Calculate domain adaptation loss
features = torch.cat([support_features, query_features, target_features], dim=0)
outputs = torch.cat((support_outputs, query_outputs, target_outputs), dim=0)
softmax_output = nn.Softmax(dim=1)(outputs)
# Set label: source 1; target 0
domain_label = torch.zeros([supports.shape[0] + querys.shape[0] + target_data.shape[0], 1]).cuda()
domain_label[:supports.shape[0] + querys.shape[0]] = 1
randomlayer_out = random_layer.forward([features, softmax_output])
domain_logits = domain_classifier(randomlayer_out, episode)
domain_loss = models.domain_criterion(domain_logits, domain_label)
# Total loss = FSL loss + domain loss
loss = f_loss + domain_loss
# Update parameters
feature_encoder.zero_grad()
domain_classifier.zero_grad()
loss.backward()
feature_encoder_optim.step()
domain_classifier_optim.step()
total_hit += torch.sum(torch.argmax(logits, dim=1).cpu() == query_labels).item()
total_num += querys.shape[0]
# Target domain few-shot + domain adaptation
else:
'''Few-shot classification for target domain dataset'''
# Get few-shot classification samples
task = utils.Task(target_da_metatrain_data, test_num_classes, shots_per_class, queries_per_class)
support_dataloader = utils.get_HBKC_data_loader(task, num_per_class=shots_per_class, split="train", shuffle=False)
query_dataloader = utils.get_HBKC_data_loader(task, num_per_class=queries_per_class, split="test", shuffle=True)
# Sample data
supports, support_labels = support_dataloader.__iter__().__next__()
querys, query_labels = query_dataloader.__iter__().__next__()
# Calculate features
support_features, support_outputs = feature_encoder(supports.cuda(), domain='target')
query_features, query_outputs = feature_encoder(querys.cuda(), domain='target')
source_features, source_outputs = feature_encoder(source_data.cuda())
# Prototype network
if shots_per_class > 1:
support_proto = support_features.reshape(num_classes, shots_per_class, -1).mean(dim=1)
else:
support_proto = support_features
# FSL loss
logits = models.pairwise_euclidean_distance(query_features, support_proto)
f_loss = models.crossEntropy(logits, query_labels.cuda())
'''Domain adaptation'''
features = torch.cat([support_features, query_features, source_features], dim=0)
outputs = torch.cat((support_outputs, query_outputs, source_outputs), dim=0)
softmax_output = nn.Softmax(dim=1)(outputs)
domain_label = torch.zeros([supports.shape[0] + querys.shape[0] + source_features.shape[0], 1]).cuda()
domain_label[supports.shape[0] + querys.shape[0]:] = 1
randomlayer_out = random_layer.forward([features, softmax_output])
domain_logits = domain_classifier(randomlayer_out, episode)
domain_loss = models.domain_criterion(domain_logits, domain_label)
# Total loss = FSL loss + domain loss
loss = f_loss + domain_loss
# Update parameters
feature_encoder.zero_grad()
domain_classifier.zero_grad()
loss.backward()
feature_encoder_optim.step()
domain_classifier_optim.step()
total_hit += torch.sum(torch.argmax(logits, dim=1).cpu() == query_labels).item()
total_num += querys.shape[0]
if (episode + 1) % 100 == 0: # Display progress every 100 episodes
train_loss.append(loss.item())
print('Episode {:>3d}: Domain loss: {:6.4f}, FSL loss: {:6.4f}, Accuracy: {:6.4f}, Total loss: {:6.4f}'.format(
episode + 1, domain_loss.item(), f_loss.item(), total_hit / total_num, loss.item()))
if (episode + 1) % 1000 == 0 or episode == 0:
# Test the model
print("Testing...")
train_end = time.time()
feature_encoder.eval()
total_rewards = 0
counter = 0
accuracies = []
predict = np.array([], dtype=np.int64)
labels = np.array([], dtype=np.int64)
# Calculate features for training set
train_datas, train_labels = train_loader.__iter__().__next__()
train_features, _ = feature_encoder(Variable(train_datas).cuda(), domain='target')
# Normalize features
max_value = train_features.max()
min_value = train_features.min()
train_features = (train_features - min_value) * 1.0 / (max_value - min_value)
# Fit KNN classifier
KNN_classifier = KNeighborsClassifier(n_neighbors=1)
KNN_classifier.fit(train_features.cpu().detach().numpy(), train_labels)
# Test on test set
for test_datas, test_labels in test_loader:
batch_size = test_labels.shape[0]
# Calculate features for test set
test_features, _ = feature_encoder(Variable(test_datas).cuda(), domain='target')
test_features = (test_features - min_value) * 1.0 / (max_value - min_value)
predict_labels = KNN_classifier.predict(test_features.cpu().detach().numpy())
test_labels = test_labels.numpy()
rewards = [1 if predict_labels[j] == test_labels[j] else 0 for j in range(batch_size)]
total_rewards += np.sum(rewards)
counter += batch_size
predict = np.append(predict, predict_labels)
labels = np.append(labels, test_labels)
accuracy = total_rewards / 1.0 / counter
accuracies.append(accuracy)
test_accuracy = 100. * total_rewards / len(test_loader.dataset)
print('\tAccuracy: {}/{} ({:.2f}%)\n'.format(total_rewards, len(test_loader.dataset), test_accuracy))
test_end = time.time()
# Set the model back to training mode
feature_encoder.train()
if test_accuracy > last_accuracy:
# Save the model checkpoints
torch.save(feature_encoder.state_dict(),
str("checkpoints/DFSL_feature_encoder_" + "salinas_" + str(iDataSet) + "iter_" + str(
test_labeled_samples_per_class) + "shot.pkl"))
print("Saved networks for episode:", episode + 1)
last_accuracy = test_accuracy
best_episdoe = episode
acc[iDataSet] = 100. * total_rewards / len(test_loader.dataset)
OA = acc
C = metrics.confusion_matrix(labels, predict)
A[iDataSet, :] = np.diag(C) / np.sum(C, 1, dtype=float)
k[iDataSet] = metrics.cohen_kappa_score(labels, predict)
print('Best episode: [{}], Best accuracy: {}'.format(best_episdoe + 1, last_accuracy))
if test_accuracy > best_acc_all:
best_predict_all = predict
best_G, best_RandPerm, best_Row, best_Column, best_nTrain = G, RandPerm, Row, Column, nTrain
print('Iter: {} Best episode: [{}], Best accuracy: {}'.format(iDataSet, best_episdoe + 1, last_accuracy))
print('***********************************************************************************')
AA = np.mean(A, 1)
AAMean = np.mean(AA, 0)
AAStd = np.std(AA)
AMean = np.mean(A, 0)
AStd = np.std(A, 0)
OAMean = np.mean(acc)
OAStd = np.std(acc)
kMean = np.mean(k)
kStd = np.std(k)
print("Train time per DataSet (s): {:.5f}".format(train_end - train_start))
print("Test time per DataSet (s): {:.5f}".format(test_end - train_end))
print("Average OA: {:.2f} +- {:.2f}".format(OAMean, OAStd))
print("Average AA: {:.2f} +- {:.2f}".format(100 * AAMean, 100 * AAStd))
print("Average kappa: {:.4f} +- {:.4f}".format(100 * kMean, 100 * kStd))
print("Accuracy for each class:")
for i in range(num_classes):
print("Class {}: {:.2f} +- {:.2f}".format(i, 100 * AMean[i], 100 * AStd[i]))
best_iDataset = 0
for i in range(len(acc)):
print('{}: {}'.format(i, acc[i]))
if acc[i] > acc[best_iDataset]:
best_iDataset = i
print('Best accuracy for all: {}'.format(acc[best_iDataset]))
################# Classification Map ############################
# Convert predictions to classification map
classification_map = np.zeros((best_G.shape[0], best_G.shape[1], 3))
for i in range(len(best_predict_all)):
index = best_nTrain + i
row_index = best_Row[best_RandPerm[index]]
col_index = best_Column[best_RandPerm[index]]
classification_map[row_index][col_index] = best_predict_all[i] + 1
# Map classification values to colors
colors = {
0: [0, 0, 0],
1: [0, 0, 1],
2: [0, 1, 0],
3: [0, 1, 1],
4: [1, 0, 0],
5: [1, 0, 1],
6: [1, 1, 0],
7: [0.5, 0.5, 1],
8: [0.65, 0.35, 1],
9: [0.75, 0.5, 0.75],
10: [0.75, 1, 0.5],
11: [0.5, 1, 0.65],
12: [0.65, 0.65, 0],
13: [0.75, 1, 0.65],
14: [0, 0, 0.5],
15: [0, 1, 0.75],
16: [0.5, 0.75, 1]
}
# Generate the final classification map
classification_map_rgb = np.zeros((best_G.shape[0], best_G.shape[1], 3))
for i in range(best_G.shape[0]):
for j in range(best_G.shape[1]):
classification_value = best_G[i][j]
if classification_value in colors:
classification_map_rgb[i, j, :] = colors[classification_value]
# Generate and save the classification map image
classification_map_cropped = classification_map_rgb[4:-4, 4:-4, :]
output_file_path = "classificationMap/salinas_{}shot.png".format(test_labeled_samples_per_class)
utils.classification_map(classification_map_cropped, classification_map[4:-4, 4:-4], 24, output_file_path)