-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhysRev.155.1404.nb
6565 lines (6508 loc) · 298 KB
/
PhysRev.155.1404.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 305460, 6557]
NotebookOptionsPosition[ 302166, 6488]
NotebookOutlinePosition[ 302557, 6504]
CellTagsIndexPosition[ 302514, 6501]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell["\<\
https://journals.aps.org/pr/abstract/10.1103/PhysRev.155.1404\
\>", "Text",
CellChangeTimes->{
3.874579362148677*^9},ExpressionUUID->"c6858843-d152-4d49-89ac-\
6b1ad0584dd1"],
Cell[CellGroupData[{
Cell["Equation 12: L\[CloseCurlyQuote][w0] as series", "Chapter",
CellChangeTimes->{{3.8745544865922737`*^9, 3.8745544885265408`*^9}, {
3.874572138899428*^9,
3.874572147143612*^9}},ExpressionUUID->"a938a87b-3ee1-4489-93bf-\
ab0522c6a1c5"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"Lpint", ",", "Lpser"}], "]"}], "\[IndentingNewLine]",
RowBox[{
FractionBox[
RowBox[{"\[Pi]", "^", "2"}], "12"], "-",
RowBox[{"Sum", "[",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}], " "}],
RowBox[{
RowBox[{"n", "^", "2"}], " ",
RowBox[{"w0", "^", "n"}]}]], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "\[Infinity]"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Lpint", "[", "w0_", "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{
FractionBox["1", "w"],
RowBox[{"Log", "[",
RowBox[{"1", "+",
FractionBox["1", "w"]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"w", ",", "1", ",", "w0"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Lpser", "[",
RowBox[{"w0_", ",", "nmax_"}], "]"}], ":=",
RowBox[{
FractionBox[
RowBox[{"\[Pi]", "^", "2"}], "12"], "-",
RowBox[{"Sum", "[",
RowBox[{
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"-", "1"}], ")"}], "^",
RowBox[{"(",
RowBox[{"n", "-", "1"}], ")"}]}], " "}],
RowBox[{
RowBox[{"n", "^", "2"}], " ",
RowBox[{"w0", "^", "n"}]}]], ",",
RowBox[{"{",
RowBox[{"n", ",", "1", ",", "nmax"}], "}"}]}],
"]"}]}]}], "\[IndentingNewLine]",
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Lpint", "[", "w0", "]"}], ",",
RowBox[{"Lpser", "[",
RowBox[{"w0", ",", "2"}], "]"}], ",",
RowBox[{"Lpser", "[",
RowBox[{"w0", ",", "7"}], "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"w0", ",", "1", ",", "2"}], "}"}], ",",
RowBox[{"PlotPoints", "\[Rule]", "2"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Default", ",", "Dashed"}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.5"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<w0\>\"", ",", "\"\<L'[w0]\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\[Integral] form\>\"", ",", "\"\<nmax=2\>\"", ",",
"\"\<nmax=7\>\""}], "}"}]}], ",",
RowBox[{"PlotLabel", "\[Rule]", "\"\<Equation 12\>\""}]}], "]"}]}], "Input",\
CellChangeTimes->{{3.874554492000053*^9, 3.8745545878333683`*^9}, {
3.874571654979681*^9,
3.874571801734604*^9}},ExpressionUUID->"f6cdb18d-adc8-452d-aa8d-\
63d02621765d"],
Cell[BoxData[
RowBox[{
FractionBox[
SuperscriptBox["\[Pi]", "2"], "12"], "+",
RowBox[{"PolyLog", "[",
RowBox[{"2", ",",
RowBox[{"-",
FractionBox["1", "w0"]}]}], "]"}]}]], "Output",
CellChangeTimes->{
3.8745545882870417`*^9, {3.87457167943862*^9, 3.874571742730344*^9},
3.874571785522016*^9},
CellLabel->"Out[46]=",ExpressionUUID->"cb439cb6-e4f5-4b47-a328-410174ee0229"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBwQI+/SFib1JlAgAAACsAAAACAAAA4cTvSaH9mT+wuO/GREYQwP5NIFPH
oqA/O2RugqRwDsBRJs5YVy6mP4j/NgR9KwzApP57Xue5qz/WN8evgWoKwHzr
FLK7orA/K9u7wyD9CMCm1+u0g2izP7FI8aJxyQfA0MPCt0sutj+v0Zww/b8G
wPqvmboT9Lg/dVJXssnWBcAknHC927m7PzPSznkHBwXATohHwKN/vj8cJxXS
2ksEwDw6j+G1osA/zddwaq2hA8BRsPrimQXCP/4oG+DFBQPAZiZm5H1owz89
pLAaBnYCwI8SPedFLsY/BptYMpp0AcCkiKjoKZHHP7gRYz54AAHAuP4T6g30
yD/utVnCb5MAwOLq6uzVucs/O8My1m2X/7/3YFbuuRzNP2VkW2ek3/6/DNfB
751/zj/7pnCQJzH+v5thTPmyotA/0NhDtd/s/L+mHAL6JFTRP3s83Oa5Vfy/
sNe3+pYF0j8fmcgjI8X7v8VNI/x6aNM/I0DRULW1+r/vOfr+Qi7WP85zlSf9
0vi/+vSv/7Tf1j8JcJldAGX4vwSwZQAnkdc/C9xhfcb6978YJtEBC/TYP51o
15PAMPe/QhKoBNO52z859ckVXcH1v0zNXQVFa9w/JbhBAkJs9b9XiBMGtxzd
P19CXRqWGfW/bP5+B5t/3j8Lz7MqGHv0v0v1KoWxouA/sXFoIcJW87/Q0oWF
avvgP0bliIhOEvO/VrDghSNU4T+wMsaSjs/yv2BrloaVBeI/clOmLeVO8r91
4QGIeWjjP7SmWiFCX/G/+r5ciDLB4z/9K4xTuSbxv4Cct4jrGeQ/ULvVwXHv
8L+KV22JXcvkP1oRxYx6hPC/DzXIiRYk5T+hzk1htlDwv5QSI4rPfOU/VOmh
Twoe8L8a8H2KiNXlP2GATI7a2O+/n83YikEu5j/ToMZIrXfvv9PSdDA=
"]]},
Annotation[#, "Charting`Private`Tag$22118#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Dashing[{Small, Small}]],
LineBox[CompressedData["
1:eJwBcQKO/SFib1JlAgAAACYAAAACAAAAT6UCxRZCpz5HZ2odOP8EwOQXTdnv
1oc/c56BYllhBMBU6+Sabi6WP00SfPAA4gPAUSbOWFcupj8DJy7f6OcCwKT+
e17nuas/nxidE5d1AsB86xSyu6KwP0I9kCVuCQLA0MPCt0sutj/UIy/lQUEB
wPqvmboT9Lg/74XMIkfkAMAknHC927m7P4N56zl/iwDAPDqP4bWiwD+bSlNj
acr/v48SPedFLsY/dQkXMsd8/b+kiKjoKZHHP7hHRHSs9vy/uP4T6g30yD9K
TtMIOHX8v+Lq6uzVucs/3QHgsyh/+7+bYUz5sqLQPwj8fvP/v/m/phwC+iRU
0T+BSX2Oclj5v7DXt/qWBdI/jrwitNzz+L/FTSP8emjTP1mH8gQIM/i/7zn6
/kIu1j/6zH4sU8/2v/r0r/+039Y/D7mLdgV89r8EsGUAJ5HXPzinEyjIKva/
GCbRAQv02D8HlkpdK471v0ISqATTuds/uO7VmGJq9L9MzV0FRWvcP5ZUvq6H
JfS/V4gTBrcc3T+jd8czMuLzv2z+fgebf94/+qp1o+Jf879L9SqFsaLgP51I
uXFia/K/0NKFhWr74D9yzbcHXzHyv1aw4IUjVOE/hgLQnob48b9ga5aGlQXi
PxbG4wYzivG/deEBiHlo4z88SgttG7rwv/q+XIgyweM/lnRnoYeI8L+AnLeI
6xnkPxXjBnvgV/C/ildtiV3L5D/4lLVqffLvvw81yIkWJOU/6ip3/2+W77+U
EiOKz3zlPwtpQXgLPO+/GvB9iojV5T/VP+TdROPuv5/N2IpBLuY/tAmgoRGM
7r/tDEZA
"]]}, Annotation[#, "Charting`Private`Tag$22118#2"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwBsQJO/SFib1JlAgAAACoAAAACAAAAizxnmIEMoj+wuO/GREYQwFEmzlhX
LqY/Z9KOOiwYDsCk/nte57mrP3gB71QxywvAfOsUsruisD/mAc6GZgcKwKbX
67SDaLM/s+9gzZeZCMDQw8K3Sy62P4UNIla/ZgfA+q+ZuhP0uD8X/+ty2V4G
wCSccL3bubs/JVnotZ93BcBOiEfAo3++P4Y/NHwVqgTAPDqP4bWiwD+QNM9R
Q/EDwFGw+uKZBcI/VGRoHoFJA8BmJmbkfWjDP2tB/ssJsALAjxI950Uuxj8e
M0r21p8BwKSIqOgpkcc/jtgzZAomAcC4/hPqDfTIP5+IU/IztADA4urq7NW5
yz+GMq3cvcn/v/dgVu65HM0/rGYWt+cL/78M18HvnX/OP1rJK8MvWP6/m2FM
+bKi0D/nQY32aQv9v6YcAvokVNE/kk2Yi9Bw/L+w17f6lgXSP18jsww03fu/
xU0j/Hpo0z8lP4V3ycj6v+85+v5CLtY/zaN9Sijf+L/69K//tN/WP6xEKXzn
b/i/BLBlACeR1z9iOaGRjQT4vxgm0QEL9Ng/ReDevqI4979CEqgE07nbP98e
HZuIxvW/TM1dBUVr3D9uUrbz6nD1v1eIEwa3HN0/Ck9C+Mkd9b9s/n4Hm3/e
P6Mwn6KEfvS/S/UqhbGi4D9ekQsvC1nzv9DShYVq++A/Cc757F8U879WsOCF
I1ThP/kz4slt0fK/YGuWhpUF4j8nUjxLblDyv3XhAYh5aOM/jeNSv0tg8b/6
vlyIMsHjP4n+XlSqJ/G/gJy3iOsZ5D+yZkh9TPDwv4pXbYldy+Q/X3Gp3i6F
8L8PNciJFiTlP4pxdCpaUfC/lBIjis985T/i9XQdnx7wvxrwfYqI1eU/2KA/
AenZ77+fzdiKQS7mP53K0RujeO+/tiFoXQ==
"]]},
Annotation[#, "Charting`Private`Tag$22118#3"]& ]}}, {}}, {
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, DisplayFunction -> Identity, DisplayFunction -> Identity,
Ticks -> {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& , Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& },
AxesOrigin -> {0., -4.068621738797603}, FrameTicks -> {{Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}, {Quiet[
Charting`ScaledTicks[{Log, Exp}][#, #2, {6, 6}]]& ,
Charting`ScaledFrameTicks[{Log, Exp}]}}, GridLines -> {None, None},
DisplayFunction -> Identity, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity,
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"ClippingRange" -> {{{6.931471805599452*^-7,
0.6931464874127647}, {-14.548536649117013`, -0.9545982510319875}}, {{
6.931471805599452*^-7,
0.6931464874127647}, {-4.068621738797603, -0.9545982510319875}}}},
DisplayFunction -> Identity, AspectRatio -> 0.5, Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, -4.068621738797603},
CoordinatesToolOptions -> {"DisplayFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
Exp[
Part[#, 1]],
Exp[
Part[#, 2]]}& )}, DisplayFunction :> Identity,
Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox["\"L'[w0]\"", TraditionalForm], None}, {
FormBox["\"w0\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" ->
None}, PlotLabel -> FormBox["\"Equation 12\"", TraditionalForm],
PlotRange -> NCache[{{0,
Log[2]}, {-4.068621738797603, -0.9545982510319875}}, {{
0, 0.6931471805599453}, {-4.068621738797603, -0.9545982510319875}}],
PlotRangeClipping -> True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"\"\[Integral] form\"", "\"nmax=2\"", "\"nmax=7\""},
"LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Dashing[{Small, Small}]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6],
Dashing[{Small, Small}]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #2,
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {
LineBox[{{0, 10}, {40, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
RGBColor[0.560181, 0.691569, 0.194885],
AbsoluteThickness[1.6]], {}}}, AspectRatio -> Full,
ImageSize -> {40, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #3}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0.8, 0.5}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxDividers -> {"Columns" -> {{None}}, "Rows" -> {{None}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {"Columns" -> {{0}}, "Rows" -> {{1}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.368417, 0.506779, 0.709798],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.24561133333333335`, 0.3378526666666667,
0.4731986666666667], FrameTicks -> None, PlotRangePadding ->
None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.368417`", ",", "0.506779`", ",", "0.709798`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.368417, 0.506779, 0.709798];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.368417, 0.506779, 0.709798], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.880722, 0.611041, 0.142051],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.587148, 0.40736066666666665`, 0.09470066666666668],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.880722`", ",", "0.611041`", ",", "0.142051`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.880722, 0.611041, 0.142051];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.880722, 0.611041, 0.142051], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
RowBox[{"Dashing", "[",
RowBox[{"{",
RowBox[{"Small", ",", "Small"}], "}"}], "]"}]}], "]"}],
",",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[0.560181, 0.691569, 0.194885],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle ->
RGBColor[
0.37345400000000006`, 0.461046, 0.12992333333333334`],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"0.560181`", ",", "0.691569`", ",", "0.194885`"}],
"]"}], NumberMarks -> False]], Appearance -> None,
BaseStyle -> {}, BaselinePosition -> Baseline,
DefaultBaseStyle -> {}, ButtonFunction :>
With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[0.560181, 0.691569, 0.194885];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[0.560181, 0.691569, 0.194885], Editable -> False,
Selectable -> False], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}]}], "]"}]}],
"}"}], ",",
RowBox[{"{",
RowBox[{#, ",", #2, ",", #3}], "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Row\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"]}, {
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "Below"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{
3.8745545882870417`*^9, {3.87457167943862*^9, 3.874571742730344*^9},
3.8745717862195387`*^9},
CellLabel->"Out[49]=",ExpressionUUID->"75491143-7a04-4b95-a50d-db88652bcc5a"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 1", "Chapter",
CellChangeTimes->{{3.87457160785142*^9,
3.874571608753367*^9}},ExpressionUUID->"cb013a83-0037-4fb8-b988-\
9e65a65265f2"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{"\[Sigma]", ",", "\[Beta]", ",", "r0", ",", "\[Phi]9", ",", "s0"}],
"]"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"equation", " ", "4", " ", "defines", " ", "\[Beta]", " ", "as", " ",
"function", " ", "of", " ", "s"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}],
RowBox[{"(",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"3", "-",
RowBox[{"\[Beta]", "^", "4"}]}], ")"}],
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "+", "\[Beta]"}],
RowBox[{"1", "-", "\[Beta]"}]], "]"}]}], "-",
RowBox[{"2", "\[Beta]",
RowBox[{"(",
RowBox[{"2", "-",
RowBox[{"\[Beta]", "^", "2"}]}], ")"}]}]}], ")"}]}], "/.",
RowBox[{"{",
RowBox[{"\[Beta]", "->",
RowBox[{"Sqrt", "[",
RowBox[{"1", "-",
RowBox[{"1", "/", "s"}]}], "]"}]}], "}"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"total", " ", "cross", " ", "section"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Sigma]", "[", "s_", "]"}], ":=",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1", "s"]}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"3", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1", "s"]}], ")"}], "2"]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]]}],
RowBox[{"1", "-",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]]}]], "]"}]}]}], "s"]}],
RowBox[{"(*", " ",
RowBox[{"multiplied", " ", "by", " ",
FractionBox[
RowBox[{"\[Pi]", " ",
RowBox[{"r0", "^", "2"}]}], "2"]}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"function", " ", "to", " ", "plot", " ", "in", " ", "figure", " ", "1"}],
" ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Phi]9", "[", "s0_", "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"s", " ",
RowBox[{"\[Sigma]", "[", "s", "]"}]}], ",",
RowBox[{"{",
RowBox[{"s", ",", "1", ",", "s0"}], "}"}]}], "]"}]}],
RowBox[{"(*", " ",
RowBox[{"divided", " ", "by", " ",
FractionBox["2",
RowBox[{"\[Pi]", " ",
RowBox[{"r0", "^", "2"}]}]]}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
FractionBox[
RowBox[{"\[Phi]9", "[", "s0", "]"}],
RowBox[{"s0", "-", "1"}]], ",",
RowBox[{"{",
RowBox[{"s0", ",", "1", ",", "10"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "10"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "5"}], "}"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.5"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<s0\>\"", ",", "\"\<\[Phi]/(s0-1)\>\""}], "}"}]}]}],
"]"}]}], "Input",
CellChangeTimes->{{3.8744946415703287`*^9, 3.8744947987296267`*^9}, {
3.874494839828657*^9, 3.8744949542913427`*^9}},
CellLabel->"In[54]:=",ExpressionUUID->"7d3aa9a6-0363-4200-8f47-e134341c1bc1"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV0Xs41AkXB/BZUe4zP4TBYvxCKrFJTNrOoUK0XdBGCWkV1Zv1Gp5lV7kk
knG/p4kitiarsmt6o4aNSJalJbeRkjVSfuNuarPz/nGe83ye5/vHec6XFRjq
ESRHo9GCZfP//VLyzVc0GgXGAfa1MQ+coFn9F+5eFQrWKP3uFSi9C/fXMyaK
tSnguO85n/vTAyhxDXN+x6LgzLH6xl1ujyEtqOs625KCFW7JrE79Rvgx3mY5
yZ4Cn0zOsJv7Ewi+lnOkZwcFiQ8o14uuzbCj71ut8MMUpKqt+zWprxWs52u/
bwiigBiR1Emi28BQk9lOD6Mg1CX8ha1iOyzuGUjkJ8nyfK0d7ZIOqBL6L7yt
oSD/0ODCgaIuKB4Sem4WUhDRiEw7u264JGVVx7dREL1PsD+gsxu+2zwabPSa
gtK0Ucn/Fl+AXmVwvzddAges326zWdsLielh9W0hEkj+IDnBNB2A//K7mHoR
Eij8LTYw++oABLTaRAbHSqDrYVN5rdYgbF0xv1EhXwIZq1cnbV0eBCoyumT7
EwnYvuljZjaLwNcvIeGu4TTIn3nuf01zBDZZ5u7O756GlqgTcRpWoyB3drN+
3/A0ZMStErkHjkJXVfek3uQ0fOnx+Bd27iiEWWtk8ORnYLa00ZQtHYVqm/Se
ctsZaO/lD1DCt7Bx66XjNfkz0L3tU8Exp79hnUtMzJ9HZiGiMv4HE4MJYB0L
uqsyOgceoc0zJ/ZOweDQ31kxU3Ng7NjAUQufgrzDpzhT0jk484jPz8+fAmWv
ULtuYh56bxgbeb+aglnnqPoimIeBMe1IF1mPLRu4rRZX5oHUqV9Pa6bg7GLN
iIvHAjh4u9rrvJTAw3R5jQvCRdgUYysc75+BMrWVNry0j1BXKGpoObYAJhcy
buQWfoaRjX8lptZK4aaUc9FVQMOlntsfnH/4BxKtxl5vdpJDRVFa3xhBQ9XU
ZKPpJyvQ7veyZEf8AsVBWd53LRWwjCpsrHCUQ0ZdAHu4ZiXud8qLZjqtQG56
njbdRBGjx/seuBjJ472Uf7rpyUpYf15sfkgsjyw5C/Z5VRW0UbDwXvObAo7N
PyyiIlWx6PRXOh4hK3HupGZZ57Ia7vz2TZqm8Srk04q5cXF0PFr36all6yr0
VWlmF3EYaD6oLqjwU8RkrxLabTsCy+JeONcsKqK/b1VT3XsCRWvO80vilPDI
dZ5I4b4GttgmVW+hK+P6nypO1nI0MYL70m4pWxnLtUY/hFhoYaqIMyFQVsFd
7+Seeb7XQttZaanvRRXMiD14Y3vZaqQXjgn951Sw6mfhZOYhbVx2F5B+fqo4
zVBPMdDTwZnLt5muz1VxZEu6aWWHDk5K3+32s1LDuaJprdM5uqgYYvk1O18N
h7LOcvIOMrHK0LC/d0kNQ3cbdjUq6WGiKVYoeaqj+fbqBLN2PdTLkdqLq9Ux
RRJhczlBH5/AOXWFlXQU2nt5em8xwOEzPl3sQ3Q0eKT11HfRAON7y2c/8elI
yimxA+98iS5sM+8JKR33XRj+zAszRFf1w8E8MwaaNYkbB9caYaUgV193DwM7
C1UX4geN8NeaG4ofQxm4vycZqvcZ4yrajp3LuQxUh/L4a7eM8Wf5ZfdbAgaK
mu+FrlNjYU6k+PXxIQYWFDzPEf+HhXWnFDpKaQRW7qaxLVpY6GBtZtVpTOAz
pmmS/DoTTKpeXProRKBT63GvgEQTvNXhEb0tUNZbY5UPJTLBOM/TW9xiCdQd
mFA0QBL3MlIndpYQ+LoL7VqKSLw5Ohd0uZ5A3lp37aPFJNauDhOrPiLQ59zB
OclVErkbogLTZO60OHVfv5TEk2w728zHBD6KzbYKrSDRb774aF4DgVc2jplr
15B47hbvIa+JQK+Uy7rftZMYznwlqGgnkPEqd2HxDxLLvg+RmP9BYJttSQ+3
k0TOVoFRpcxOIzU5td0kTuneOVrZQaC1vYih0k9iFHeNf+WfBKqOWSvdGyOx
cHt71M2/CGxxcBh3Hicx/5sYulkPgQmZu54OiGX3nlS/Ui6zdNvhRIX3JEqy
+rPLegkcz074wmeGRB2um+r1Ptl/xNxX72dJ9KnbdIDVT6A/FDyOnyfxQIFS
aonMPRP8GP4SiVLDlDe8AQKzsNbX8SOJwxvsaIaDBO7Na3Do+UTiyJ0+jasy
K0+26Z3+TGK8R7i+wRCBTY49S8vLJA4+U9C7IvO/FqgAPg==
"]]},
Annotation[#, "Charting`Private`Tag$34221#1"]& ]}, {}},
AspectRatio->0.5,
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"\[Phi]/(s0-1)\"", TraditionalForm], None}, {
FormBox["\"s0\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 10}, {0, 5}},
PlotRangeClipping->True,
PlotRangePadding->{{0, 0}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.874494765783965*^9, 3.8744947989786263`*^9}, {
3.874494850897197*^9, 3.8744948586116457`*^9}, {3.8744949254454803`*^9,
3.874494955283297*^9}},
CellLabel->"Out[58]=",ExpressionUUID->"660dd038-9cfd-43b2-be03-4c743e141eb5"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Equation 13: asymptotic formulas", "Chapter",
CellChangeTimes->{{3.874571627504464*^9, 3.874571628451742*^9}, {
3.87457188446025*^9, 3.8745718860325212`*^9}, {3.874572126244273*^9,
3.874572133410487*^9}},ExpressionUUID->"948bc264-2041-4db6-a12e-\
4b726790b574"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{
"\[Sigma]", ",", "\[Beta]", ",", "r0", ",", "\[Phi]9", ",", "s0", ",",
"\[Phi]13a", ",", "\[Phi]13b"}], "]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]9", "[", "s0_", "]"}], ":=",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"s", " ",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"-", "2"}], " ",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]], " ",
RowBox[{"(",
RowBox[{"1", "+",
FractionBox["1", "s"]}], ")"}]}], "+",
RowBox[{
RowBox[{"(",
RowBox[{"3", "-",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
FractionBox["1", "s"]}], ")"}], "2"]}], ")"}], " ",
RowBox[{"Log", "[",
FractionBox[
RowBox[{"1", "+",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]]}],
RowBox[{"1", "-",
SqrtBox[
RowBox[{"1", "-",
FractionBox["1", "s"]}]]}]], "]"}]}]}], "s"]}], ",",
RowBox[{"{",
RowBox[{"s", ",", "1", ",", "s0"}], "}"}]}],
"]"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]13a", "[", "s0_", "]"}], ":=",
RowBox[{
RowBox[{"2", "s0",
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"4", "s0"}], "]"}], "-", "2"}], ")"}]}], "+",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"4", "s0"}], "]"}],
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"4", "s0"}], "]"}], "-", "2"}], ")"}]}], "-",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"\[Pi]", "^", "2"}], "-", "9"}], ")"}], "/", "3"}], "+",
RowBox[{
FractionBox["1", "s0"],
RowBox[{"(",
RowBox[{
RowBox[{"Log", "[",
RowBox[{"4", "s0"}], "]"}], "+",
RowBox[{"9", "/", "8"}]}], ")"}]}]}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Phi]13b", "[", "s0_", "]"}], ":=",
RowBox[{
RowBox[{
FractionBox["2", "3"],
RowBox[{
RowBox[{"(",
RowBox[{"s0", "-", "1"}], ")"}], "^", "1.5"}]}], "+",
RowBox[{
FractionBox["5", "3"],
RowBox[{
RowBox[{"(",
RowBox[{"s0", "-", "1"}], ")"}], "^", "2.5"}]}], "-",
RowBox[{
FractionBox["1507", "420"],
RowBox[{
RowBox[{"(",
RowBox[{"s0", "-", "1"}], ")"}], "^",
"3.5"}]}]}]}], "\[IndentingNewLine]",
RowBox[{"LogLogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"\[Phi]9", "[", "s0", "]"}], ",",
RowBox[{"\[Phi]13a", "[", "s0", "]"}], ",",
RowBox[{"\[Phi]13b", "[", "s0", "]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"s0", ",", "1", ",", "5"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "5"}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "10"}], "}"}]}], "}"}]}], ",",
RowBox[{"AspectRatio", "\[Rule]", "0.5"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<s0\>\"", ",", "\"\<\[Phi][s0])\>\""}], "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<(9)\>\"", ",", "\"\<13a\>\"", ",", "\"\<13b\>\""}],
"}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.874571894024728*^9, 3.874572118426772*^9}},
CellLabel->"In[84]:=",ExpressionUUID->"bbbe6c6e-d11a-4280-8d8a-e87701aec4e8"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.368417, 0.506779, 0.709798],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVxXs40wsfAPBhsTZi5hJT5zi8XQ5FEh3Fd15NS7HSI6lX26OUJN3oiJSU
olMSJlRiZ2gcipBb/b4cdprIJXdyKyMilxFFve/7x+f5GHqdcvVWJJFIAf/z
/82OxnlzBefByUelVXnJSsxZatuj6xAElHI3XU/BCmR1iwNyOcEgMVG/c09v
BTbn6tDYLheBwy5+9TnDAL+vnWOWmIZB3/Fzb9e3M5ETt/7YNbMrQPAM99gG
MzF24Ug+1yIc+jurPqYYMnFVfSNHZn0N6vJO7zC+pI+nN1Pi82wi4CYnp5lv
oY+laXa9F22vw9yfKab6I3roHJAdyHCIBO7zYx31XnqY8K4fe9hRsOyZ1MTJ
SA/7HJerZnFuwprqNo6NbDkG6EUIWS634GCd9qfKs8vRhfdkqMg0BoYdbjOP
CHVxOs7ptkFuDMgwKIJ7VhcTXw1ahJvdhatuRa4iB10c2GBwydkiFu77b2ds
HtHB8+QorQ/W8bBGnkozYusg8zfj0h0l8SDzS5zzXqmDeJLgPbERwKcTgcpx
c9pIbZvJCrZNgHJbA5uwJ9r4UOxlT3dIhAcv0/pSVmnjv3sWZeerEqFF4PHI
WFkbZZpJt7rZSeCcSd/tItNC84v1bZmcZJh/7i4/91gLq1y2+tu5PIC8jPwB
n41aODt/s67QNBVuceuih3gMjDdZV9dxNhVe6muusWUz0MKzvnaxOBWMD5tR
SCYM9EdGLZudBmPl+xKJL5oou/6gpsVTCPMH/35dK9DEVkbuPzPRIjDvcJZU
9dMxgL37H70WEcT+UFKNr6Wj5u9TEltmOpy9++vlzOd0dOm0kkRkpsO4edd8
XDQdJalElTZmQEq47+p9QMfCdY0VmyYfgyGffnpbtga68s5VeFiLwVTzX2tF
SRo4EaNdERoqhoeiD4EWkRpoKvfA6qVZYOWY2dHqrYGi0oGXbr9kQxrPUmZs
pIHx2+VlgXtzwJPHD7JxUsfSp7Suzs6nUFtQZSe6qoba2aODSd+ewq2kz+q9
vmp4Ov31xH6DPPBQnHjp6KqGq5P/UG7zzIM2DRY92VAN46/SLN725UFXCanB
rlIVT+6jRb2W5UO2usLMIlUVf16gWpdPFYCH8z2lxiIqhsyO2IcwCuG2z9yn
JCEVWydqdtlYFkK2dCMtLJqKtwZvehUHFkLdjofhwqNUnH9DjS6YK4T0zgvf
rJZTsSmNOvjX9yLYKeVL3cOWYsR2atxDagms5qmURnpRsMax0rT41xJoHxkK
K9tDQQ3HYEmTUwlw8n2VFe0pmLxtZF7ljxI4+mH8hvQnCuba1/DP0krhbozl
atseFWzfcnP9dtUyONPkuvLOIRU0NafWTKi9ANqpbWLihDL6qkaQhJEIjfGR
b2afkrFvQ0IiLRnBb6zLrVlIRjf3TPPAbISHSsxdRDwZWUIpn/MGIU2wRfdF
EBl1Ni+rGGdUgECWYO1mT8bKw/eubHlUAd6ZPOP+ZiXULxMrthRWQn8At7yS
rITS42/IlPdV4DX0LWPXVQUkk479wpmugpC3O+7dD1JAVsIPiFSqBvGulvHJ
kwpYXGkeQjGuBp+UvoyC/QqYwYybpHhXg2bgovLd9QoYXufes3SoGvbFnvrt
QRcJt27of04blUBolldGkQ0Jc+emfdWnX4Fbfo94hc53YueCV8raA3WAC7WD
5cHzRLzL8dYDrQ2gXPBD+jR8hqi2vhN9prMJxAMbJYtmU8TeLo8cOrUFXunE
0heaxgjRPc3QcK02uPvk3CNzq2FCINxp85dWB+wtG280039PvD+29hCP1QV+
AUaFL7q7CDl7xuK94zvgNv2ncklDE8Hv8fafCOqFkuqkZ8FGfxNFXtk7Dzb0
AYteyXV7d4fY8cxoU87hfmCT+1dEdWZBykBycUZjP2RnvRzj+5VCAdHdXjQ8
ANMlkaKWz7VgIhbsMRt7D3ZyEsP5Ygs0fE4N9VMZhL5oothU0g0ST7+frxvI
QCXEt9ekqR9WtOcyKT8NAZG3pOvQ8AcQPnGocbEeBteUj+2eRsMQGcdtXNz6
EQg9/tSA2igQKUxulO0IiA6onMl4OwbGKjZhHXtHgbpOaniUNwEjIfVLY90/
QX1vpqVu/iT0OD93VD8zBn/GDS1ZpTsNRtt5X30ixmFT5rEWtp8cpLsuKZvc
+AxCipX5I+EM1Ld9GdjPnYAcRf0J69FZ8FX/5N/QOAFnyJKYWZ05yDnAsira
Mwnpg0aRj63m4Uazrful7km4pvPIjufzFWKbz4u+ek7B2z4iU3b5G1gqeez0
GJkCZjTnCkO8ACrF51f6nZwGYBTyj5QsQniY3HRsbBqGLadapcR3iP+dKdh9
QQ4L5QrWMW0/oE0eutbnmxxG9e7/MPMjsfJSo3S9ImegRnnswMoZEmsjf4ZV
ozkLwsu9VP8LCixZ+oMEWdwsLEwOX1s2rcByEtAWarS/gI5bYVneCUXWfwEd
S50r
"]]}, Annotation[#, "Charting`Private`Tag$59525#1"]& ],
TagBox[{
Directive[
Opacity[1.],
RGBColor[0.880722, 0.611041, 0.142051],
AbsoluteThickness[1.6]],
LineBox[CompressedData["
1:eJwVkHs41Ikexqe2I4yTcs2lsulsK9MWyuy2+E7ZwUZD2U5oLas6biGFJbQS
QmnJEBaLqEWuRYbVl46IsmasSw0mxnGPZC4uM/Obdf54n/f5/PU+7+dTr6BT
FzaSSCTv9fy/DQt+Pm1T9KMVt3yWnagtx7zZny0kFBrsMSt6pLTO+SBYHqQ4
wZjZxl3XteS4c/bR6XaKJ4iQ0+6sKUebXxJiBdTz8BRFkkoNOQYc8qwysPaB
GkPjDtI6/4BJcc2US1BoNrMrUU2OS2li3e9ML4P1QFlF8zY5Jpw/VzNLDYGo
lx84M1vlWKFkydO2DodPSo3f/UtVjoTRih6LEgPd/E+37yfL0S79C++4A9ch
KZV2QVtZjnel52sdTWNB5jrqsKIox896OHaT1DhYiR1ayFOQ44mQ8lB160Ro
axq7F75BjpkjYy08ehKIvZ/2apPkOGqzXaXMLhlyVIyqKwgCQ3Tii2iM2xAh
M3RplhDI8KiaqqekgkMtL+6iiEBB+vEU/cpUqDJMlLYICMx6OWEaeyANlLJX
d6ssEcg30b92wvQuZGlF3UhYIDBsU5LG/6hM8LYP6iRPEaj31Z7Gb1lM8Lzi
Mq85QWBLAHpUHcmA1B2H2VrjBCoPisquWmbCbZbSsJRHYF6p19Ft1lkgnjnu
5DZA4DGebDKsLQvyd6dU6fYROKmWfXuYng3MoIExDofAg1E9gw/tcqBcWNa1
p5vANoZFoBUjFwyq3xHf/5dA8Wpydx2lAOgbHSt1KglkGu/vfnu5AB7+mZJH
LifQ1L3ntayhAKrlHJLgIYGBLeqv6fRC8H19xryocH0vIber370ImsYUJmOZ
BA6oV3aI7hTDfO8i92T4uj+6U4dOfzFcjfjeNy+EQLWfltot9UqgvnkFeZfW
fXLN2+MflsCOtmMjx3wJbC/ANs2WB7Dd2jkmzZXAuv2c1sMff4cY/fOjJ74k
8JTHlVZXailYUe37V8wIXEzVbI2OLoWh4P7l7AMEUoSuLS+UyoCq7zz27DMC
ixv5z07vLoeQ2kIlpsb6P1thU6hzBRwhNCXBCzJsrCYPcbnVkOnr6mvyqww1
y+cmsiXVoNFZqrQlU4aXSl4tuujXQL1V/wI/VYZ7c24pDLrXwPUA8v3QBBky
b5BN/xqtgWPc365AsAwD/k1OejVZC68wlu1Hl6GBVJn6x9ITCNunffPUtBTj
bZXT85RZoJXdObFJV4pdNs8pDftYkGHCpzPUpbjV5mp773EWNCXXEWkqUsz5
ZnZ18y0WKNel3FOUS7DyaJfnZXIjSIzIJo/HJfjm6+QvbFWagN4c57bpkQQp
B5W7Fv/ZDGvJqjqdX0rQTyWeVJTYAqMFWi7+36xhp++fmxTH20C6O+/CY9IK
Vq4I/FQFL+F9yluLo3+I0F7qlW/k1g0G/j+K/cwEyGT4DrgNsGHLdBZ5uXYR
X1B/uRPM7QVJmsbXFS/fo/OQa8U25X4wWws6PDU+hcX31KJjNQYhtSTQc+bK
OGYU2R95pPEW2hXj505e5eG4t9EPHrQhEJqzOyIf9KOQLjIdtxmBZ1Vieov/
K/TkXQhcDH8HPsJ+m/yKOqz3Krc/yx4Fo0lYM2Hch28fGx6uODcGnRZsn6RO
FuTzcxoecMbgWk9LfOjsc3iCw2/qp/nQduOsc1kfG4xLM04emB8H1qCDLiti
ENgfCqIvbp6A3s9f6CgE8aDd/aJBgv4kPLdiHS2K48OON5V6irumoIdIsU+L
mYCiKusuBnUaCoP32o/cn4bEdEeOzGIGdGVPS+ci5wDz9RyTLGdhX+NXNf8x
XYA9m4/EvHWeg4MurHOdNxdhNrJH6e6Z95DfoZi90vcReCee2qgGzwP3hduv
q4cEYGjrseYTvwBqw1Ue0/FC6HS4pmB88wNk9Ua9m2sQQc/gMt/FcREcGM/0
Awgx+Km+D2RzFqFV0hP4eO8KVLjRzOtPfoTPR2x1GPRVuNlneeba8EeY9pv2
3xq6Bnf7worX3JcgxTbS6R+3JHDoE1d719kl2Kt3J4xVK4XNDWE7LwYIoLRZ