-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtester_SensatUrban.py
119 lines (93 loc) · 4.82 KB
/
tester_SensatUrban.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from os import makedirs, system
from os.path import exists, join, dirname, abspath
import tensorflow as tf
import numpy as np
import time
def log_out(out_str, log_f_out):
log_f_out.write(out_str + '\n')
log_f_out.flush()
print(out_str)
class ModelTester:
def __init__(self, model, dataset, restore_snap=None):
my_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(my_vars, max_to_keep=100)
self.Log_file = open('log_test_' + dataset.name + '.txt', 'a')
# Create a session for running Ops on the Graph.
on_cpu = False
if on_cpu:
c_proto = tf.ConfigProto(device_count={'GPU': 0})
else:
c_proto = tf.ConfigProto()
c_proto.gpu_options.allow_growth = True
self.sess = tf.Session(config=c_proto)
self.sess.run(tf.global_variables_initializer())
# Load trained model
if restore_snap is not None:
self.saver.restore(self.sess, restore_snap)
print("Model restored from " + restore_snap)
self.prob_logits = tf.nn.softmax(model.logits)
# Initiate global prediction over all test clouds
self.test_probs = [np.zeros(shape=[l.shape[0], model.config.num_classes], dtype=np.float32)
for l in dataset.input_labels['test']]
def test(self, model, dataset, num_votes=100):
# Smoothing parameter for votes
test_smooth = 0.95
# Initialise iterator with validation/test data
self.sess.run(dataset.test_init_op)
# Test saving path
saving_path = time.strftime('results/Log_%Y-%m-%d_%H-%M-%S', time.gmtime())
test_path = join('test', saving_path.split('/')[-1])
makedirs(test_path) if not exists(test_path) else None
makedirs(join(test_path, 'test_preds')) if not exists(join(test_path, 'test_preds')) else None
step_id = 0
epoch_id = 0
last_min = -0.5
while last_min < num_votes:
try:
ops = (self.prob_logits,
model.labels,
model.inputs['input_inds'],
model.inputs['cloud_inds'])
stacked_probs, stacked_labels, point_idx, cloud_idx = self.sess.run(ops, {model.is_training: False})
stacked_probs = np.reshape(stacked_probs, [model.config.val_batch_size, model.config.num_points,
model.config.num_classes])
for j in range(np.shape(stacked_probs)[0]):
probs = stacked_probs[j, :, :]
p_idx = point_idx[j, :]
c_i = cloud_idx[j][0]
self.test_probs[c_i][p_idx] = test_smooth * self.test_probs[c_i][p_idx] + (1 - test_smooth) * probs
step_id += 1
except tf.errors.OutOfRangeError:
new_min = np.min(dataset.min_possibility['test'])
log_out('Epoch {:3d}, end. Min possibility = {:.1f}'.format(epoch_id, new_min), self.Log_file)
if last_min + 1 < new_min:
# Update last_min
last_min += 1
# Show vote results (On subcloud so it is not the good values here)
log_out('\nConfusion on sub clouds', self.Log_file)
num_test = len(dataset.input_labels['test'])
# Project predictions
log_out('\nReproject Vote #{:d}'.format(int(np.floor(new_min))), self.Log_file)
proj_probs_list = []
for i_test in range(num_test):
# Reproject probs back to the evaluations points
proj_idx = dataset.test_proj[i_test]
probs = self.test_probs[i_test][proj_idx, :]
proj_probs_list += [probs]
# Show vote results
log_out('Confusion on full clouds', self.Log_file)
for i_test in range(num_test):
# Get the predicted labels
preds = dataset.label_values[np.argmax(proj_probs_list[i_test], axis=1)].astype(np.uint8)
save_name = join(test_path, 'test_preds', dataset.input_names['test'][i_test] + '.label')
preds = preds.astype(np.uint8)
preds.tofile(save_name)
# creat submission files
base_dir = dirname(abspath(__file__))
results_path = join(base_dir, test_path, 'test_preds')
system('cd %s && zip -r %s/submission.zip *.label' % (results_path, results_path))
return
self.sess.run(dataset.test_init_op)
epoch_id += 1
step_id = 0
continue