-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCarBrainNoHidden.py
40 lines (32 loc) · 1.4 KB
/
CarBrainNoHidden.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import tensorflow as tf
from godot import exposed, export
from godot.bindings import *
@exposed
class CarBrainNoHidden(Node):
def _ready(self):
self.input_params = tf.placeholder(tf.float32, [1, 10])
self.hidden = tf.layers.dense(inputs=self.input_params, units=10,activation = tf.nn.sigmoid)
#self.hidden2 = tf.layers.dense(inputs=self.hidden, units=10)
self.output = tf.layers.dense(inputs=self.hidden, units=5 )#, activation = tf.nn.sigmoid)
self.actual_v = tf.placeholder ( tf.float32, [1,5])
self.loss = tf.losses.mean_squared_error(self.actual_v,self.output)
self.optimizer = tf.train.GradientDescentOptimizer(0.01)
self.train = self.optimizer.minimize(self.loss)
self.g_output = tf.gather(self.output, 0)
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())
print("Tf initialized")
def get_prediction(self, g_params):
ret = self.session.run(self.g_output, feed_dict = {self.input_params : [g_params]})
return str(ret)
def train_char(self, g_params, real_values):
self.session.run(self.train, feed_dict = {self.actual_v: [real_values], self.input_params : [g_params]})
ret = self.session.run(self.g_output, feed_dict = {self.input_params : [g_params]})
# p_arr = PoolRealArray()
# p_arr.resize(5)
# for i in range(5):
# p_arr[i] = ret[i]
# with p_arr.raw_access() as ptr:
# for i in range(5):
# ptr[i] = ret[i] # this is fast
return str(ret)