-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathwrite_path.py
74 lines (71 loc) · 2.63 KB
/
write_path.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import os
from PIL import Image
import random
file_train = open('train-before.txt',"w")
out = open("train.txt","w")
n=0
path_train = '/scratch/dubo_01/liujia/Dataset/WHU-building-dataset/train_nooverlap/'
path_train_list = sorted(os.listdir(path_train+'A/'))
random.shuffle(path_train_list)
for file_A in path_train_list:
path_file_A = path_train+"A/"+file_A
path_file_B = path_train+"B/"+file_A
path_file_label = path_train+"OUT/"+file_A
# img = Image.open(path_file_label)
# if not img.getbbox():
# print(path_file_label)
# continue
n+=1
file_train.write(path_file_A + ' ' + path_file_B + ' ' + path_file_label + '\n')
print(n)
path_train_another = '/scratch/dubo_01/liujia/Dataset/WHU-building-dataset/train_around_instance/'
path_train_list = sorted(os.listdir(path_train_another+'A/'))
random.shuffle(path_train_list)
for file_A in path_train_list:
path_file_A = path_train_another+"A/"+file_A
path_file_B = path_train_another+"B/"+file_A
path_file_label = path_train_another+"OUT/"+file_A
img = Image.open(path_file_label)
if not img.getbbox():
print(path_file_label)
continue
n+=1
file_train.write(path_file_A + ' ' + path_file_B + ' ' + path_file_label + '\n')
file_train.close()
print(n)
with open('train-before.txt', "r") as f1:
lines = f1.read().splitlines()
random.shuffle(lines)
for line in lines:
out.write(line+'\n')
print("ok_train")
file_val = open('val.txt',"w")
path_val = '/scratch/dubo_01/liujia/Dataset/WHU-building-dataset/test_nooverlap/'
path_val_list = sorted(os.listdir(path_val + 'A/'))
random.shuffle(path_val_list)
for file_A in path_val_list:
path_file_A = path_val+"A/"+file_A
path_file_B = path_val+"B/"+file_A
path_file_label = path_val+"OUT/"+file_A
# img = Image.open(path_file_label)
# if not img.getbbox():
# print(path_file_label)
# continue
file_val.write(path_file_A + ' ' + path_file_B + ' ' + path_file_label + '\n')
file_val.close()
print("ok_val")
file_test = open('test.txt',"w")
path_test = '/scratch/dubo_01/liujia/Dataset/WHU-building-dataset/test_nooverlap/'
path_test_list = sorted(os.listdir(path_test+'A/'))
random.shuffle(path_test_list)
for file_A in path_test_list:
path_file_A = path_test+"A/"+file_A
path_file_B = path_test+"B/"+file_A
path_file_label = path_test+"OUT/"+file_A
# img = Image.open(path_file_label)
# if not img.getbbox():
# print(path_file_label)
# continue
file_test.write(path_file_A + ' ' + path_file_B + ' ' + path_file_label + '\n')
file_test.close()
print("ok_test")