Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

yolov7_L训练打电话数据准确率很低的问题 #148

Closed
1 task done
Daniel-deng-yi opened this issue May 31, 2023 · 3 comments
Closed
1 task done

yolov7_L训练打电话数据准确率很低的问题 #148

Daniel-deng-yi opened this issue May 31, 2023 · 3 comments
Assignees

Comments

@Daniel-deng-yi
Copy link

问题确认 Search before asking

  • 我已经搜索过问题,但是没有找到解答。I have searched the question and found no related answer.

请提出你的问题 Please ask your question

Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.044
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.026
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.034
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.200
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.407
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.291
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.466
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.575
[05/31 06:51:43] ppdet.engine INFO: Total sample number: 12362, average FPS: 41.24864364260208

Process finished with exit code 0

训练检测打电话模型,10w数据训练,1w数据测试,正样本:负样本比列大概为1:3
想问下准确率很低大概会发生在哪?

@nemonameless
Copy link
Collaborator

nemonameless commented May 31, 2023

你好,请发下更多详细信息,包括配置文件并说明改动,以及此epoch的训练log loss可截图

@Daniel-deng-yi
Copy link
Author

metric: COCO
num_classes: 2

TrainDataset:
!COCODataSet
image_dir: ./
anno_path: 00.Datasets/train.json
dataset_dir: ./
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
allow_empty: true

EvalDataset:
!COCODataSet
image_dir: ./
anno_path: 00.Datasets/test.json
dataset_dir: ./
allow_empty: true

TestDataset:
!ImageFolder
anno_path: 00.Datasets/test.json # also support txt (like VOC's label_list.txt)
dataset_dir: ./

architecture: YOLOv7
#norm_type: sync_bn
use_ema: True
ema_decay: 0.9999
ema_decay_type: "exponential"
act: silu
find_unused_parameters: True

配置文件修改了数据路径和去掉了norm_type: sync_bn,这是训练完300epoch给出的结果。

loss的话在下面

image
[05/31 09:53:44] ppdet.engine INFO: Epoch: [298] [ 270/1398] eta: 0:57:53 lr: 0.001120 loss_box: 0.036667 loss_cls: 0.333099 loss_obj: 0.003078 loss: 26.953529 batch_cost: 1.2885 data_cost: 0.0019 ips: 13.9698 images/s
[05/31 09:53:57] ppdet.engine INFO: Epoch: [298] [ 280/1398] eta: 0:57:29 lr: 0.001090 loss_box: 0.037921 loss_cls: 0.245189 loss_obj: 0.002674 loss: 20.492538 batch_cost: 1.2566 data_cost: 0.0003 ips: 14.3248 images/s
[05/31 09:54:11] ppdet.engine INFO: Epoch: [298] [ 290/1398] eta: 0:57:08 lr: 0.001090 loss_box: 0.038404 loss_cls: 0.245271 loss_obj: 0.002955 loss: 21.004105 batch_cost: 1.2892 data_cost: 0.0016 ips: 13.9622 images/s
[05/31 09:54:24] ppdet.engine INFO: Epoch: [298] [ 300/1398] eta: 0:56:46 lr: 0.001090 loss_box: 0.036650 loss_cls: 0.310136 loss_obj: 0.003122 loss: 25.084692 batch_cost: 1.2677 data_cost: 0.0021 ips: 14.1993 images/s
[05/31 09:54:37] ppdet.engine INFO: Epoch: [298] [ 310/1398] eta: 0:56:26 lr: 0.001090 loss_box: 0.035082 loss_cls: 0.311220 loss_obj: 0.003341 loss: 24.991810 batch_cost: 1.2878 data_cost: 0.0009 ips: 13.9774 images/s
[05/31 09:54:51] ppdet.engine INFO: Epoch: [298] [ 320/1398] eta: 0:56:07 lr: 0.001090 loss_box: 0.034560 loss_cls: 0.261475 loss_obj: 0.003178 loss: 21.827656 batch_cost: 1.2866 data_cost: 0.0008 ips: 13.9904 images/s

@nemonameless
Copy link
Collaborator

#43
image

首先需要加载coco权重做预训练。此外bs和lr也改动了吧?以后也请一起说明下,是不是单卡训的?总bs太小再加上不合适的lr不一定训的收敛,资源不够建议换小模型或小尺度。
还有ppyoloe+和rtdetr模型可以考虑用下。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants