-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy patheval.py
109 lines (96 loc) · 3.54 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import argparse
import functools
from functools import partial
import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import DataLoader
from imagenet_reader import ImageNetDataset
from paddleslim.common import load_config as load_slim_config
def argsparser():
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
'--config_path',
type=str,
default=None,
help="path of compression strategy config.",
required=True)
return parser
def eval_reader(data_dir, batch_size):
val_reader = ImageNetDataset(mode='val', data_dir=data_dir)
val_loader = DataLoader(
val_reader,
batch_size=global_config['batch_size'],
shuffle=False,
drop_last=False,
num_workers=0)
return val_loader
def eval():
devices = paddle.device.get_device().split(':')[0]
places = paddle.device._convert_to_place(devices)
exe = paddle.static.Executor(places)
val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
global_config["model_dir"],
exe,
model_filename=global_config["model_filename"],
params_filename=global_config["params_filename"])
print('Loaded model from: {}'.format(global_config["model_dir"]))
val_reader = eval_reader(data_dir, batch_size=global_config['batch_size'])
image = paddle.static.data(
name=global_config['input_name'],
shape=[None, 224, 224, 3],
dtype='float32')
label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
results = []
print('Evaluating... It will take a while. Please wait...')
for batch_id, (image, label) in enumerate(val_reader):
# top1_acc, top5_acc
image = np.array(image)
label = np.array(label).astype('int64')
pred = exe.run(val_program,
feed={feed_target_names[0]: image},
fetch_list=fetch_targets)
pred = np.array(pred[0])
label = np.array(label)
sort_array = pred.argsort(axis=1)
top_1_pred = sort_array[:, -1:][:, ::-1]
top_1 = np.mean(label == top_1_pred)
top_5_pred = sort_array[:, -5:][:, ::-1]
acc_num = 0
for i in range(len(label)):
if label[i][0] in top_5_pred[i]:
acc_num += 1
top_5 = float(acc_num) / len(label)
results.append([top_1, top_5])
result = np.mean(np.array(results), axis=0)
return result[0]
def main():
global global_config
all_config = load_slim_config(args.config_path)
assert "Global" in all_config, "Key 'Global' not found in config file. \n{}".format(
all_config)
global_config = all_config["Global"]
global data_dir
data_dir = global_config['data_dir']
result = eval()
print('Eval Top1:', result)
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
args = parser.parse_args()
main()