-
Notifications
You must be signed in to change notification settings - Fork 349
/
Copy pathpaddle_inference_eval.py
466 lines (425 loc) · 15.6 KB
/
paddle_inference_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import time
import sys
import cv2
import numpy as np
from tqdm import tqdm
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor
from ppdet.core.workspace import load_config, create
from ppdet.metrics import COCOMetric
from post_process import PPYOLOEPostProcess
def argsparser():
"""
argsparser func
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, help="inference model filepath")
parser.add_argument(
"--image_file",
type=str,
default=None,
help="image path, if set image_file, it will not eval coco.")
parser.add_argument(
"--reader_config",
type=str,
default=None,
help="path of datset and reader config.")
parser.add_argument(
"--benchmark",
type=bool,
default=False,
help="Whether run benchmark or not.")
parser.add_argument(
"--use_trt",
type=bool,
default=False,
help="Whether use TensorRT or not.")
parser.add_argument(
"--precision",
type=str,
default="paddle",
help="mode of running(fp32/fp16/int8)")
parser.add_argument(
"--device",
type=str,
default="GPU",
help=
"Choose the device you want to run, it can be: CPU/GPU/XPU, default is GPU",
)
parser.add_argument(
"--use_dynamic_shape",
type=bool,
default=True,
help="Whether use dynamic shape or not.")
parser.add_argument(
"--use_mkldnn",
type=bool,
default=False,
help="Whether use mkldnn or not.")
parser.add_argument(
"--cpu_threads", type=int, default=10, help="Num of cpu threads.")
parser.add_argument("--img_shape", type=int, default=640, help="input_size")
parser.add_argument(
'--include_nms',
type=str,
default='True',
help="Whether include nms or not.")
parser.add_argument(
"--trt_calib_mode",
type=bool,
default=False,
help="If the model is produced by TRT offline quantitative "
"calibration, trt_calib_mode need to set True.")
return parser
CLASS_LABEL = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train',
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag',
'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite',
'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon',
'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant',
'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush'
]
def generate_scale(im, target_shape, keep_ratio=True):
"""
Args:
im (np.ndarray): image (np.ndarray)
Returns:
im_scale_x: the resize ratio of X
im_scale_y: the resize ratio of Y
"""
origin_shape = im.shape[:2]
if keep_ratio:
im_size_min = np.min(origin_shape)
im_size_max = np.max(origin_shape)
target_size_min = np.min(target_shape)
target_size_max = np.max(target_shape)
im_scale = float(target_size_min) / float(im_size_min)
if np.round(im_scale * im_size_max) > target_size_max:
im_scale = float(target_size_max) / float(im_size_max)
im_scale_x = im_scale
im_scale_y = im_scale
else:
resize_h, resize_w = target_shape
im_scale_y = resize_h / float(origin_shape[0])
im_scale_x = resize_w / float(origin_shape[1])
return im_scale_y, im_scale_x
def image_preprocess(img_path, target_shape):
"""
image_preprocess func
"""
img = cv2.imread(img_path)
im_scale_y, im_scale_x = generate_scale(img, target_shape, keep_ratio=False)
img = cv2.resize(
img, (target_shape[0], target_shape[0]),
interpolation=cv2.INTER_LANCZOS4)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1]) / 255
img = np.expand_dims(img, 0)
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
scale_factor = np.array([[im_scale_y, im_scale_x]])
return img.astype(np.float32), scale_factor.astype(np.float32)
def get_color_map_list(num_classes):
"""
get_color_map_list func
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= ((lab >> 0) & 1) << (7 - j)
color_map[i * 3 + 1] |= ((lab >> 1) & 1) << (7 - j)
color_map[i * 3 + 2] |= ((lab >> 2) & 1) << (7 - j)
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def draw_box(image_file, results, class_label, threshold=0.5):
"""
draw_box func
"""
srcimg = cv2.imread(image_file, 1)
for i in range(len(results)):
color_list = get_color_map_list(len(class_label))
clsid2color = {}
classid, conf = int(results[i, 0]), results[i, 1]
if conf < threshold:
continue
xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int(
results[i, 4]), int(results[i, 5])
if classid not in clsid2color:
clsid2color[classid] = color_list[classid]
color = tuple(clsid2color[classid])
cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2)
print(class_label[classid] + ": " + str(round(conf, 3)))
cv2.putText(
srcimg,
class_label[classid] + ":" + str(round(conf, 3)),
(xmin, ymin - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 0),
thickness=2, )
return srcimg
def load_predictor(
model_dir,
precision="fp32",
use_trt=False,
use_mkldnn=False,
batch_size=1,
device="CPU",
min_subgraph_size=4,
use_dynamic_shape=False,
trt_calib_mode=False,
trt_min_shape=1,
trt_max_shape=1280,
trt_opt_shape=640,
cpu_threads=1, ):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
precision (str): mode of running(fp32/fp16/int8)
use_trt (bool): whether use TensorRT or not.
use_mkldnn (bool): whether use MKLDNN or not in CPU.
device (str): Choose the device you want to run, it can be: CPU/GPU, default is CPU
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need device == 'GPU'.
"""
rerun_flag = False
if device != "GPU" and use_trt:
raise ValueError(
"Predict by TensorRT mode: {}, expect device=='GPU', but device == {}".
format(precision, device))
config = Config(
os.path.join(model_dir, "model.pdmodel"),
os.path.join(model_dir, "model.pdiparams"))
config.enable_memory_optim()
if device == "GPU":
# initial GPU memory(M), device ID
config.enable_use_gpu(1000, 0)
# optimize graph and fuse op
config.switch_ir_optim(True)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(cpu_threads)
config.switch_ir_optim()
if use_mkldnn:
config.enable_mkldnn()
if precision == "int8":
config.enable_mkldnn_int8(
{"conv2d", "depthwise_conv2d", "transpose2", "pool2d"})
precision_map = {
"int8": Config.Precision.Int8,
"fp32": Config.Precision.Float32,
"fp16": Config.Precision.Half,
}
if precision in precision_map.keys() and use_trt:
config.enable_tensorrt_engine(
workspace_size=(1 << 30) * batch_size,
max_batch_size=batch_size,
min_subgraph_size=min_subgraph_size,
precision_mode=precision_map[precision],
use_static=True,
use_calib_mode=False)
if use_dynamic_shape:
dynamic_shape_file = os.path.join(FLAGS.model_path,
"dynamic_shape.txt")
if os.path.exists(dynamic_shape_file):
config.enable_tuned_tensorrt_dynamic_shape(
dynamic_shape_file, True)
print("trt set dynamic shape done!")
else:
config.collect_shape_range_info(dynamic_shape_file)
print("Start collect dynamic shape...")
rerun_flag = True
# enable shared memory
config.enable_memory_optim()
predictor = create_predictor(config)
return predictor, rerun_flag
def predict_image(predictor,
image_file,
image_shape=[640, 640],
warmup=1,
repeats=1,
threshold=0.5):
"""
predict image main func
"""
img, scale_factor = image_preprocess(image_file, image_shape)
inputs = {}
inputs["image"] = img
if FLAGS.include_nms:
inputs['scale_factor'] = scale_factor
input_names = predictor.get_input_names()
for i, _ in enumerate(input_names):
input_tensor = predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]])
for i in range(warmup):
predictor.run()
np_boxes, np_boxes_num = None, None
cpu_mems, gpu_mems = 0, 0
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
paddle.device.cuda.synchronize()
for i in range(repeats):
start_time = time.time()
predictor.run()
output_names = predictor.get_output_names()
boxes_tensor = predictor.get_output_handle(output_names[0])
np_boxes = boxes_tensor.copy_to_cpu()
if FLAGS.include_nms:
boxes_num = predictor.get_output_handle(output_names[1])
np_boxes_num = boxes_num.copy_to_cpu()
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
time_avg = predict_time / repeats
print("[Benchmark]Inference time(ms): min={}, max={}, avg={}".format(
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
if not FLAGS.include_nms:
postprocess = PPYOLOEPostProcess(score_threshold=0.3, nms_threshold=0.6)
res = postprocess(np_boxes, scale_factor)
else:
res = {'bbox': np_boxes, 'bbox_num': np_boxes_num}
res_img = draw_box(
image_file, res["bbox"], CLASS_LABEL, threshold=threshold)
cv2.imwrite("result.jpg", res_img)
def eval(predictor, val_loader, metric, rerun_flag=False):
"""
eval main func
"""
cpu_mems, gpu_mems = 0, 0
predict_time = 0.0
time_min = float("inf")
time_max = float("-inf")
sample_nums = len(val_loader)
input_names = predictor.get_input_names()
output_names = predictor.get_output_names()
boxes_tensor = predictor.get_output_handle(output_names[0])
if FLAGS.include_nms:
boxes_num = predictor.get_output_handle(output_names[1])
for batch_id, data in tqdm(
enumerate(val_loader), total=len(val_loader), desc='Evaluating'):
data_all = {k: np.array(v) for k, v in data.items()}
for i, _ in enumerate(input_names):
input_tensor = predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(data_all[input_names[i]])
paddle.device.cuda.synchronize()
start_time = time.time()
predictor.run()
np_boxes = boxes_tensor.copy_to_cpu()
if FLAGS.include_nms:
np_boxes_num = boxes_num.copy_to_cpu()
if rerun_flag:
return
end_time = time.time()
timed = end_time - start_time
time_min = min(time_min, timed)
time_max = max(time_max, timed)
predict_time += timed
if not FLAGS.include_nms:
postprocess = PPYOLOEPostProcess(
score_threshold=0.3, nms_threshold=0.6)
res = postprocess(np_boxes, data_all['scale_factor'])
else:
res = {'bbox': np_boxes, 'bbox_num': np_boxes_num}
metric.update(data_all, res)
if batch_id % 100 == 0:
sys.stdout.flush()
metric.accumulate()
metric.log()
map_res = metric.get_results()
metric.reset()
time_avg = predict_time / sample_nums
print("[Benchmark]Inference time(ms): min={}, max={}, avg={}".format(
round(time_min * 1000, 2),
round(time_max * 1000, 1), round(time_avg * 1000, 1)))
print("[Benchmark] COCO mAP: {}".format(map_res["bbox"][0]))
sys.stdout.flush()
def main():
"""
main func
"""
predictor, rerun_flag = load_predictor(
FLAGS.model_path,
device=FLAGS.device,
use_trt=FLAGS.use_trt,
use_mkldnn=FLAGS.use_mkldnn,
precision=FLAGS.precision,
use_dynamic_shape=FLAGS.use_dynamic_shape,
cpu_threads=FLAGS.cpu_threads)
if FLAGS.image_file:
warmup, repeats = 1, 1
if FLAGS.benchmark:
warmup, repeats = 50, 100
predict_image(
predictor,
FLAGS.image_file,
image_shape=[FLAGS.img_shape, FLAGS.img_shape],
warmup=warmup,
repeats=repeats)
else:
reader_cfg = load_config(FLAGS.reader_config)
dataset = reader_cfg["EvalDataset"]
global val_loader
val_loader = create("EvalReader")(
reader_cfg["EvalDataset"],
reader_cfg["worker_num"],
return_list=True)
clsid2catid = {v: k for k, v in dataset.catid2clsid.items()}
anno_file = dataset.get_anno()
metric = COCOMetric(
anno_file=anno_file, clsid2catid=clsid2catid, IouType="bbox")
eval(predictor, val_loader, metric, rerun_flag=rerun_flag)
if rerun_flag:
print(
"***** Collect dynamic shape done, Please rerun the program to get correct results. *****"
)
if __name__ == "__main__":
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
if FLAGS.include_nms == 'True':
FLAGS.include_nms = True
else:
FLAGS.include_nms = False
# DataLoader need run on cpu
paddle.set_device("cpu")
main()