-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathvarifocal_loss.py
154 lines (142 loc) · 5.88 KB
/
varifocal_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# The code is based on:
# /~https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/losses/varifocal_loss.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling import ops
from paddle.base.framework import in_dygraph_mode
__all__ = ['VarifocalLoss']
def varifocal_loss(pred,
target,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
use_sigmoid=True):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
pred (Tensor): The prediction with shape (N, C), C is the
number of classes
target (Tensor): The learning target of the iou-aware
classification score with shape (N, C), C is the number of classes.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal Loss.
Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive example with the iou target. Defaults to True.
"""
# pred and target should be of the same size
assert len(pred.shape) == len(target.shape) # rank
if in_dygraph_mode():
assert pred.shape == target.shape
if use_sigmoid:
pred_new = F.sigmoid(pred)
else:
pred_new = pred
target = target.cast(pred.dtype)
if iou_weighted:
focal_weight = target * (target > 0.0).cast('float32') + \
alpha * (pred_new - target).abs().pow(gamma) * \
(target <= 0.0).cast('float32')
else:
focal_weight = (target > 0.0).cast('float32') + \
alpha * (pred_new - target).abs().pow(gamma) * \
(target <= 0.0).cast('float32')
if use_sigmoid:
loss = F.binary_cross_entropy_with_logits(
pred, target, reduction='none') * focal_weight
else:
loss = F.binary_cross_entropy(
pred, target, reduction='none') * focal_weight
loss = loss.sum(axis=1)
return loss
@register
@serializable
class VarifocalLoss(nn.Layer):
def __init__(self,
use_sigmoid=True,
alpha=0.75,
gamma=2.0,
iou_weighted=True,
reduction='mean',
loss_weight=1.0):
"""`Varifocal Loss <https://arxiv.org/abs/2008.13367>`_
Args:
use_sigmoid (bool, optional): Whether the prediction is
used for sigmoid or softmax. Defaults to True.
alpha (float, optional): A balance factor for the negative part of
Varifocal Loss, which is different from the alpha of Focal
Loss. Defaults to 0.75.
gamma (float, optional): The gamma for calculating the modulating
factor. Defaults to 2.0.
iou_weighted (bool, optional): Whether to weight the loss of the
positive examples with the iou target. Defaults to True.
reduction (str, optional): The method used to reduce the loss into
a scalar. Defaults to 'mean'. Options are "none", "mean" and
"sum".
loss_weight (float, optional): Weight of loss. Defaults to 1.0.
"""
super(VarifocalLoss, self).__init__()
assert alpha >= 0.0
self.use_sigmoid = use_sigmoid
self.alpha = alpha
self.gamma = gamma
self.iou_weighted = iou_weighted
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, pred, target, weight=None, avg_factor=None):
"""Forward function.
Args:
pred (Tensor): The prediction.
target (Tensor): The learning target of the prediction.
weight (Tensor, optional): The weight of loss for each
prediction. Defaults to None.
avg_factor (int, optional): Average factor that is used to average
the loss. Defaults to None.
Returns:
Tensor: The calculated loss
"""
loss = self.loss_weight * varifocal_loss(
pred,
target,
alpha=self.alpha,
gamma=self.gamma,
iou_weighted=self.iou_weighted,
use_sigmoid=self.use_sigmoid)
if weight is not None:
loss = loss * weight
if avg_factor is None:
if self.reduction == 'none':
return loss
elif self.reduction == 'mean':
return loss.mean()
elif self.reduction == 'sum':
return loss.sum()
else:
# if reduction is mean, then average the loss by avg_factor
if self.reduction == 'mean':
loss = loss.sum() / avg_factor
# if reduction is 'none', then do nothing, otherwise raise an error
elif self.reduction != 'none':
raise ValueError(
'avg_factor can not be used with reduction="sum"')
return loss