-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathiou_loss.py
295 lines (248 loc) · 10 KB
/
iou_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import math
import paddle
from ppdet.core.workspace import register, serializable
from ..bbox_utils import bbox_iou
__all__ = ['IouLoss', 'GIoULoss', 'DIouLoss', 'SIoULoss']
@register
@serializable
class IouLoss(object):
"""
iou loss, see https://arxiv.org/abs/1908.03851
loss = 1.0 - iou * iou
Args:
loss_weight (float): iou loss weight, default is 2.5
max_height (int): max height of input to support random shape input
max_width (int): max width of input to support random shape input
ciou_term (bool): whether to add ciou_term
loss_square (bool): whether to square the iou term
"""
def __init__(self,
loss_weight=2.5,
giou=False,
diou=False,
ciou=False,
loss_square=True):
self.loss_weight = loss_weight
self.giou = giou
self.diou = diou
self.ciou = ciou
self.loss_square = loss_square
def __call__(self, pbox, gbox):
iou = bbox_iou(
pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou)
if self.loss_square:
loss_iou = 1 - iou * iou
else:
loss_iou = 1 - iou
loss_iou = loss_iou * self.loss_weight
return loss_iou
@register
@serializable
class GIoULoss(object):
"""
Generalized Intersection over Union, see https://arxiv.org/abs/1902.09630
Args:
loss_weight (float): giou loss weight, default as 1
eps (float): epsilon to avoid divide by zero, default as 1e-10
reduction (string): Options are "none", "mean" and "sum". default as none
"""
def __init__(self, loss_weight=1., eps=1e-10, reduction='none'):
self.loss_weight = loss_weight
self.eps = eps
assert reduction in ('none', 'mean', 'sum')
self.reduction = reduction
def bbox_overlap(self, box1, box2, eps=1e-10):
"""calculate the iou of box1 and box2
Args:
box1 (Tensor): box1 with the shape (..., 4)
box2 (Tensor): box1 with the shape (..., 4)
eps (float): epsilon to avoid divide by zero
Return:
iou (Tensor): iou of box1 and box2
overlap (Tensor): overlap of box1 and box2
union (Tensor): union of box1 and box2
"""
x1, y1, x2, y2 = box1
x1g, y1g, x2g, y2g = box2
xkis1 = paddle.maximum(x1, x1g)
ykis1 = paddle.maximum(y1, y1g)
xkis2 = paddle.minimum(x2, x2g)
ykis2 = paddle.minimum(y2, y2g)
w_inter = (xkis2 - xkis1).clip(0)
h_inter = (ykis2 - ykis1).clip(0)
overlap = w_inter * h_inter
area1 = (x2 - x1) * (y2 - y1)
area2 = (x2g - x1g) * (y2g - y1g)
union = area1 + area2 - overlap + eps
iou = overlap / union
return iou, overlap, union
def __call__(self, pbox, gbox, iou_weight=1., loc_reweight=None):
x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
box1 = [x1, y1, x2, y2]
box2 = [x1g, y1g, x2g, y2g]
iou, overlap, union = self.bbox_overlap(box1, box2, self.eps)
xc1 = paddle.minimum(x1, x1g)
yc1 = paddle.minimum(y1, y1g)
xc2 = paddle.maximum(x2, x2g)
yc2 = paddle.maximum(y2, y2g)
area_c = (xc2 - xc1) * (yc2 - yc1) + self.eps
miou = iou - ((area_c - union) / area_c)
if loc_reweight is not None:
loc_reweight = paddle.reshape(loc_reweight, shape=(-1, 1))
loc_thresh = 0.9
giou = 1 - (1 - loc_thresh
) * miou - loc_thresh * miou * loc_reweight
else:
giou = 1 - miou
if self.reduction == 'none':
loss = giou
elif self.reduction == 'sum':
loss = paddle.sum(giou * iou_weight)
else:
loss = paddle.mean(giou * iou_weight)
return loss * self.loss_weight
@register
@serializable
class DIouLoss(GIoULoss):
"""
Distance-IoU Loss, see https://arxiv.org/abs/1911.08287
Args:
loss_weight (float): giou loss weight, default as 1
eps (float): epsilon to avoid divide by zero, default as 1e-10
use_complete_iou_loss (bool): whether to use complete iou loss
"""
def __init__(self, loss_weight=1., eps=1e-10, use_complete_iou_loss=True):
super(DIouLoss, self).__init__(loss_weight=loss_weight, eps=eps)
self.use_complete_iou_loss = use_complete_iou_loss
def __call__(self, pbox, gbox, iou_weight=1.):
x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1
h = y2 - y1
cxg = (x1g + x2g) / 2
cyg = (y1g + y2g) / 2
wg = x2g - x1g
hg = y2g - y1g
x2 = paddle.maximum(x1, x2)
y2 = paddle.maximum(y1, y2)
# A and B
xkis1 = paddle.maximum(x1, x1g)
ykis1 = paddle.maximum(y1, y1g)
xkis2 = paddle.minimum(x2, x2g)
ykis2 = paddle.minimum(y2, y2g)
# A or B
xc1 = paddle.minimum(x1, x1g)
yc1 = paddle.minimum(y1, y1g)
xc2 = paddle.maximum(x2, x2g)
yc2 = paddle.maximum(y2, y2g)
intsctk = (xkis2 - xkis1) * (ykis2 - ykis1)
intsctk = intsctk * paddle.greater_than(
xkis2, xkis1).astype(intsctk.dtype) * paddle.greater_than(ykis2, ykis1).astype(intsctk.dtype)
unionk = (x2 - x1) * (y2 - y1) + (x2g - x1g) * (y2g - y1g
) - intsctk + self.eps
iouk = intsctk / unionk
# DIOU term
dist_intersection = (cx - cxg) * (cx - cxg) + (cy - cyg) * (cy - cyg)
dist_union = (xc2 - xc1) * (xc2 - xc1) + (yc2 - yc1) * (yc2 - yc1)
diou_term = (dist_intersection + self.eps) / (dist_union + self.eps)
# CIOU term
ciou_term = 0
if self.use_complete_iou_loss:
ar_gt = wg / hg
ar_pred = w / h
arctan = paddle.atan(ar_gt) - paddle.atan(ar_pred)
ar_loss = 4. / np.pi / np.pi * arctan * arctan
alpha = ar_loss / (1 - iouk + ar_loss + self.eps)
alpha.stop_gradient = True
ciou_term = alpha * ar_loss
diou = paddle.mean((1 - iouk + ciou_term + diou_term) * iou_weight)
return diou * self.loss_weight
@register
@serializable
class SIoULoss(GIoULoss):
"""
see https://arxiv.org/pdf/2205.12740.pdf
Args:
loss_weight (float): siou loss weight, default as 1
eps (float): epsilon to avoid divide by zero, default as 1e-10
theta (float): default as 4
reduction (str): Options are "none", "mean" and "sum". default as none
"""
def __init__(self, loss_weight=1., eps=1e-10, theta=4., reduction='none'):
super(SIoULoss, self).__init__(loss_weight=loss_weight, eps=eps)
self.loss_weight = loss_weight
self.eps = eps
self.theta = theta
self.reduction = reduction
def __call__(self, pbox, gbox):
x1, y1, x2, y2 = paddle.split(pbox, num_or_sections=4, axis=-1)
x1g, y1g, x2g, y2g = paddle.split(gbox, num_or_sections=4, axis=-1)
box1 = [x1, y1, x2, y2]
box2 = [x1g, y1g, x2g, y2g]
iou = bbox_iou(box1, box2)
cx = (x1 + x2) / 2
cy = (y1 + y2) / 2
w = x2 - x1 + self.eps
h = y2 - y1 + self.eps
cxg = (x1g + x2g) / 2
cyg = (y1g + y2g) / 2
wg = x2g - x1g + self.eps
hg = y2g - y1g + self.eps
x2 = paddle.maximum(x1, x2)
y2 = paddle.maximum(y1, y2)
# A or B
xc1 = paddle.minimum(x1, x1g)
yc1 = paddle.minimum(y1, y1g)
xc2 = paddle.maximum(x2, x2g)
yc2 = paddle.maximum(y2, y2g)
cw_out = xc2 - xc1
ch_out = yc2 - yc1
ch = paddle.maximum(cy, cyg) - paddle.minimum(cy, cyg)
cw = paddle.maximum(cx, cxg) - paddle.minimum(cx, cxg)
# angle cost
dist_intersection = paddle.sqrt((cx - cxg)**2 + (cy - cyg)**2)
sin_angle_alpha = ch / dist_intersection
sin_angle_beta = cw / dist_intersection
thred = paddle.pow(paddle.to_tensor(2), 0.5) / 2
thred.stop_gradient = True
sin_alpha = paddle.where(sin_angle_alpha > thred, sin_angle_beta,
sin_angle_alpha)
angle_cost = paddle.cos(paddle.asin(sin_alpha) * 2 - math.pi / 2)
# distance cost
gamma = 2 - angle_cost
# gamma.stop_gradient = True
beta_x = ((cxg - cx) / cw_out)**2
beta_y = ((cyg - cy) / ch_out)**2
dist_cost = 1 - paddle.exp(-gamma * beta_x) + 1 - paddle.exp(-gamma *
beta_y)
# shape cost
omega_w = paddle.abs(w - wg) / paddle.maximum(w, wg)
omega_h = paddle.abs(hg - h) / paddle.maximum(h, hg)
omega = (1 - paddle.exp(-omega_w))**self.theta + (
1 - paddle.exp(-omega_h))**self.theta
siou_loss = 1 - iou + (omega + dist_cost) / 2
if self.reduction == 'mean':
siou_loss = paddle.mean(siou_loss)
elif self.reduction == 'sum':
siou_loss = paddle.sum(siou_loss)
return siou_loss * self.loss_weight