-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathfcos_loss.py
1020 lines (909 loc) · 39.3 KB
/
fcos_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register
from ppdet.modeling import ops
from functools import partial
__all__ = ['FCOSLoss', 'FCOSLossMILC', 'FCOSLossCR']
def flatten_tensor(inputs, channel_first=False):
"""
Flatten a Tensor
Args:
inputs (Tensor): 4-D Tensor with shape [N, C, H, W] or [N, H, W, C]
channel_first (bool): If true the dimension order of Tensor is
[N, C, H, W], otherwise is [N, H, W, C]
Return:
output_channel_last (Tensor): The flattened Tensor in channel_last style
"""
if channel_first:
input_channel_last = paddle.transpose(inputs, perm=[0, 2, 3, 1])
else:
input_channel_last = inputs
output_channel_last = paddle.flatten(
input_channel_last, start_axis=0, stop_axis=2)
return output_channel_last
@register
class FCOSLoss(nn.Layer):
"""
FCOSLoss
Args:
loss_alpha (float): alpha in focal loss
loss_gamma (float): gamma in focal loss
iou_loss_type (str): location loss type, IoU/GIoU/LINEAR_IoU
reg_weights (float): weight for location loss
quality (str): quality branch, centerness/iou
"""
def __init__(self,
loss_alpha=0.25,
loss_gamma=2.0,
iou_loss_type="giou",
reg_weights=1.0,
quality='centerness'):
super(FCOSLoss, self).__init__()
self.loss_alpha = loss_alpha
self.loss_gamma = loss_gamma
self.iou_loss_type = iou_loss_type
self.reg_weights = reg_weights
self.quality = quality
def _iou_loss(self,
pred,
targets,
positive_mask,
weights=None,
return_iou=False):
"""
Calculate the loss for location prediction
Args:
pred (Tensor): bounding boxes prediction
targets (Tensor): targets for positive samples
positive_mask (Tensor): mask of positive samples
weights (Tensor): weights for each positive samples
Return:
loss (Tensor): location loss
"""
plw = pred[:, 0] * positive_mask
pth = pred[:, 1] * positive_mask
prw = pred[:, 2] * positive_mask
pbh = pred[:, 3] * positive_mask
tlw = targets[:, 0] * positive_mask
tth = targets[:, 1] * positive_mask
trw = targets[:, 2] * positive_mask
tbh = targets[:, 3] * positive_mask
tlw.stop_gradient = True
trw.stop_gradient = True
tth.stop_gradient = True
tbh.stop_gradient = True
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
clw = paddle.maximum(plw, tlw)
crw = paddle.maximum(prw, trw)
cth = paddle.maximum(pth, tth)
cbh = paddle.maximum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
ious = ious * positive_mask
if return_iou:
return ious
if self.iou_loss_type.lower() == "linear_iou":
loss = 1.0 - ious
elif self.iou_loss_type.lower() == "giou":
area_uniou = area_predict + area_target - area_inter
area_circum = (clw + crw) * (cth + cbh) + 1e-7
giou = ious - (area_circum - area_uniou) / area_circum
loss = 1.0 - giou
elif self.iou_loss_type.lower() == "iou":
loss = 0.0 - paddle.log(ious)
else:
raise KeyError
if weights is not None:
loss = loss * weights
return loss
def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
tag_bboxes, tag_center):
"""
Calculate the loss for classification, location and centerness
Args:
cls_logits (list): list of Tensor, which is predicted
score for all anchor points with shape [N, M, C]
bboxes_reg (list): list of Tensor, which is predicted
offsets for all anchor points with shape [N, M, 4]
centerness (list): list of Tensor, which is predicted
centerness for all anchor points with shape [N, M, 1]
tag_labels (list): list of Tensor, which is category
targets for each anchor point
tag_bboxes (list): list of Tensor, which is bounding
boxes targets for positive samples
tag_center (list): list of Tensor, which is centerness
targets for positive samples
Return:
loss (dict): loss composed by classification loss, bounding box
"""
cls_logits_flatten_list = []
bboxes_reg_flatten_list = []
centerness_flatten_list = []
tag_labels_flatten_list = []
tag_bboxes_flatten_list = []
tag_center_flatten_list = []
num_lvl = len(cls_logits)
for lvl in range(num_lvl):
cls_logits_flatten_list.append(
flatten_tensor(cls_logits[lvl], True))
bboxes_reg_flatten_list.append(
flatten_tensor(bboxes_reg[lvl], True))
centerness_flatten_list.append(
flatten_tensor(centerness[lvl], True))
tag_labels_flatten_list.append(
flatten_tensor(tag_labels[lvl], False))
tag_bboxes_flatten_list.append(
flatten_tensor(tag_bboxes[lvl], False))
tag_center_flatten_list.append(
flatten_tensor(tag_center[lvl], False))
cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)
tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
tag_labels_flatten.stop_gradient = True
tag_bboxes_flatten.stop_gradient = True
tag_center_flatten.stop_gradient = True
mask_positive_bool = tag_labels_flatten > 0
mask_positive_bool.stop_gradient = True
mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
mask_positive_float.stop_gradient = True
num_positive_fp32 = paddle.sum(mask_positive_float)
num_positive_fp32.stop_gradient = True
num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
num_positive_int32 = num_positive_int32 * 0 + 1
num_positive_int32.stop_gradient = True
normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
normalize_sum.stop_gradient = True
# 1. cls_logits: sigmoid_focal_loss
# expand onehot labels
num_classes = cls_logits_flatten.shape[-1]
tag_labels_flatten = paddle.squeeze(tag_labels_flatten, axis=-1)
tag_labels_flatten_bin = F.one_hot(
tag_labels_flatten, num_classes=1 + num_classes)
tag_labels_flatten_bin = tag_labels_flatten_bin[:, 1:]
# sigmoid_focal_loss
cls_loss = F.sigmoid_focal_loss(
cls_logits_flatten, tag_labels_flatten_bin) / num_positive_fp32
if self.quality == 'centerness':
# 2. bboxes_reg: giou_loss
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self._iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=tag_center_flatten)
reg_loss = reg_loss * mask_positive_float / normalize_sum
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
quality_loss = ops.sigmoid_cross_entropy_with_logits(
centerness_flatten, tag_center_flatten)
quality_loss = quality_loss * mask_positive_float / num_positive_fp32
elif self.quality == 'iou':
# 2. bboxes_reg: giou_loss
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self._iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=None)
reg_loss = reg_loss * mask_positive_float / num_positive_fp32
# num_positive_fp32 is num_foreground
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
gt_ious = self._iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=None,
return_iou=True)
quality_loss = ops.sigmoid_cross_entropy_with_logits(
centerness_flatten, gt_ious)
quality_loss = quality_loss * mask_positive_float / num_positive_fp32
else:
raise Exception(f'Unknown quality type: {self.quality}')
loss_all = {
"loss_cls": paddle.sum(cls_loss),
"loss_box": paddle.sum(reg_loss),
"loss_quality": paddle.sum(quality_loss),
}
return loss_all
@register
class FCOSLossMILC(FCOSLoss):
"""
FCOSLossMILC for ARSL in semi-det(ssod)
Args:
loss_alpha (float): alpha in focal loss
loss_gamma (float): gamma in focal loss
iou_loss_type (str): location loss type, IoU/GIoU/LINEAR_IoU
reg_weights (float): weight for location loss
"""
def __init__(self,
loss_alpha=0.25,
loss_gamma=2.0,
iou_loss_type="giou",
reg_weights=1.0):
super(FCOSLossMILC, self).__init__()
self.loss_alpha = loss_alpha
self.loss_gamma = loss_gamma
self.iou_loss_type = iou_loss_type
self.reg_weights = reg_weights
def iou_loss(self, pred, targets, weights=None, avg_factor=None):
"""
Calculate the loss for location prediction
Args:
pred (Tensor): bounding boxes prediction
targets (Tensor): targets for positive samples
weights (Tensor): weights for each positive samples
Return:
loss (Tensor): location loss
"""
plw = pred[:, 0]
pth = pred[:, 1]
prw = pred[:, 2]
pbh = pred[:, 3]
tlw = targets[:, 0]
tth = targets[:, 1]
trw = targets[:, 2]
tbh = targets[:, 3]
tlw.stop_gradient = True
trw.stop_gradient = True
tth.stop_gradient = True
tbh.stop_gradient = True
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
clw = paddle.maximum(plw, tlw)
crw = paddle.maximum(prw, trw)
cth = paddle.maximum(pth, tth)
cbh = paddle.maximum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
ious = ious
if self.iou_loss_type.lower() == "linear_iou":
loss = 1.0 - ious
elif self.iou_loss_type.lower() == "giou":
area_uniou = area_predict + area_target - area_inter
area_circum = (clw + crw) * (cth + cbh) + 1e-7
giou = ious - (area_circum - area_uniou) / area_circum
loss = 1.0 - giou
elif self.iou_loss_type.lower() == "iou":
loss = 0.0 - paddle.log(ious)
else:
raise KeyError
if weights is not None:
loss = loss * weights
loss = paddle.sum(loss)
if avg_factor is not None:
loss = loss / avg_factor
return loss
# temp function: calcualate iou between bbox and target
def _bbox_overlap_align(self, pred, targets):
assert pred.shape[0] == targets.shape[0], \
'the pred should be aligned with target.'
plw = pred[:, 0]
pth = pred[:, 1]
prw = pred[:, 2]
pbh = pred[:, 3]
tlw = targets[:, 0]
tth = targets[:, 1]
trw = targets[:, 2]
tbh = targets[:, 3]
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
return ious
def iou_based_soft_label_loss(self,
pred,
target,
alpha=0.75,
gamma=2.0,
iou_weighted=False,
implicit_iou=None,
avg_factor=None):
assert pred.shape == target.shape
pred = F.sigmoid(pred)
target = target.cast(pred.dtype)
if implicit_iou is not None:
pred = pred * implicit_iou
if iou_weighted:
focal_weight = (pred - target).abs().pow(gamma) * target * (target > 0.0).cast('float32') + \
alpha * (pred - target).abs().pow(gamma) * \
(target <= 0.0).cast('float32')
else:
focal_weight = (pred - target).abs().pow(gamma) * (target > 0.0).cast('float32') + \
alpha * (pred - target).abs().pow(gamma) * \
(target <= 0.0).cast('float32')
# focal loss
loss = F.binary_cross_entropy(
pred, target, reduction='none') * focal_weight
if avg_factor is not None:
loss = loss / avg_factor
return loss
def forward(self, cls_logits, bboxes_reg, centerness, tag_labels,
tag_bboxes, tag_center):
"""
Calculate the loss for classification, location and centerness
Args:
cls_logits (list): list of Tensor, which is predicted
score for all anchor points with shape [N, M, C]
bboxes_reg (list): list of Tensor, which is predicted
offsets for all anchor points with shape [N, M, 4]
centerness (list): list of Tensor, which is predicted
centerness for all anchor points with shape [N, M, 1]
tag_labels (list): list of Tensor, which is category
targets for each anchor point
tag_bboxes (list): list of Tensor, which is bounding
boxes targets for positive samples
tag_center (list): list of Tensor, which is centerness
targets for positive samples
Return:
loss (dict): loss composed by classification loss, bounding box
"""
cls_logits_flatten_list = []
bboxes_reg_flatten_list = []
centerness_flatten_list = []
tag_labels_flatten_list = []
tag_bboxes_flatten_list = []
tag_center_flatten_list = []
num_lvl = len(cls_logits)
for lvl in range(num_lvl):
cls_logits_flatten_list.append(
flatten_tensor(cls_logits[lvl], True))
bboxes_reg_flatten_list.append(
flatten_tensor(bboxes_reg[lvl], True))
centerness_flatten_list.append(
flatten_tensor(centerness[lvl], True))
tag_labels_flatten_list.append(
flatten_tensor(tag_labels[lvl], False))
tag_bboxes_flatten_list.append(
flatten_tensor(tag_bboxes[lvl], False))
tag_center_flatten_list.append(
flatten_tensor(tag_center[lvl], False))
cls_logits_flatten = paddle.concat(cls_logits_flatten_list, axis=0)
bboxes_reg_flatten = paddle.concat(bboxes_reg_flatten_list, axis=0)
centerness_flatten = paddle.concat(centerness_flatten_list, axis=0)
tag_labels_flatten = paddle.concat(tag_labels_flatten_list, axis=0)
tag_bboxes_flatten = paddle.concat(tag_bboxes_flatten_list, axis=0)
tag_center_flatten = paddle.concat(tag_center_flatten_list, axis=0)
tag_labels_flatten.stop_gradient = True
tag_bboxes_flatten.stop_gradient = True
tag_center_flatten.stop_gradient = True
# find positive index
mask_positive_bool = tag_labels_flatten > 0
mask_positive_bool.stop_gradient = True
mask_positive_float = paddle.cast(mask_positive_bool, dtype="float32")
mask_positive_float.stop_gradient = True
num_positive_fp32 = paddle.sum(mask_positive_float)
num_positive_fp32.stop_gradient = True
num_positive_int32 = paddle.cast(num_positive_fp32, dtype="int32")
num_positive_int32 = num_positive_int32 * 0 + 1
num_positive_int32.stop_gradient = True
# centerness target is used as reg weight
normalize_sum = paddle.sum(tag_center_flatten * mask_positive_float)
normalize_sum.stop_gradient = True
# 1. IoU-Based soft label loss
# calculate iou
with paddle.no_grad():
pos_ind = paddle.nonzero(
tag_labels_flatten.reshape([-1]) > 0).reshape([-1])
pos_pred = bboxes_reg_flatten[pos_ind]
pos_target = tag_bboxes_flatten[pos_ind]
bbox_iou = self._bbox_overlap_align(pos_pred, pos_target)
# pos labels
pos_labels = tag_labels_flatten[pos_ind].squeeze(1)
cls_target = paddle.zeros(cls_logits_flatten.shape)
cls_target[pos_ind, pos_labels - 1] = bbox_iou
cls_loss = self.iou_based_soft_label_loss(
cls_logits_flatten,
cls_target,
implicit_iou=F.sigmoid(centerness_flatten),
avg_factor=num_positive_fp32)
# 2. bboxes_reg: giou_loss
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self._iou_loss(
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float,
weights=tag_center_flatten)
reg_loss = reg_loss * mask_positive_float / normalize_sum
# 3. iou loss
pos_iou_pred = paddle.squeeze(centerness_flatten, axis=-1)[pos_ind]
loss_iou = ops.sigmoid_cross_entropy_with_logits(pos_iou_pred, bbox_iou)
loss_iou = loss_iou / num_positive_fp32 * 0.5
loss_all = {
"loss_cls": paddle.sum(cls_loss),
"loss_box": paddle.sum(reg_loss),
'loss_iou': paddle.sum(loss_iou),
}
return loss_all
# Concat multi-level feature maps by image
def levels_to_images(mlvl_tensor):
batch_size = mlvl_tensor[0].shape[0]
batch_list = [[] for _ in range(batch_size)]
channels = mlvl_tensor[0].shape[1]
for t in mlvl_tensor:
t = t.transpose([0, 2, 3, 1])
t = t.reshape([batch_size, -1, channels])
for img in range(batch_size):
batch_list[img].append(t[img])
return [paddle.concat(item, axis=0) for item in batch_list]
def multi_apply(func, *args, **kwargs):
"""Apply function to a list of arguments.
Note:
This function applies the ``func`` to multiple inputs and
map the multiple outputs of the ``func`` into different
list. Each list contains the same type of outputs corresponding
to different inputs.
Args:
func (Function): A function that will be applied to a list of
arguments
Returns:
tuple(list): A tuple containing multiple list, each list contains \
a kind of returned results by the function
"""
pfunc = partial(func, **kwargs) if kwargs else func
map_results = map(pfunc, *args)
return tuple(map(list, zip(*map_results)))
@register
class FCOSLossCR(FCOSLossMILC):
"""
FCOSLoss of Consistency Regularization
"""
def __init__(self,
iou_loss_type="giou",
cls_weight=2.0,
reg_weight=2.0,
iou_weight=0.5,
hard_neg_mining_flag=True):
super(FCOSLossCR, self).__init__()
self.iou_loss_type = iou_loss_type
self.cls_weight = cls_weight
self.reg_weight = reg_weight
self.iou_weight = iou_weight
self.hard_neg_mining_flag = hard_neg_mining_flag
def iou_loss(self, pred, targets, weights=None, avg_factor=None):
"""
Calculate the loss for location prediction
Args:
pred (Tensor): bounding boxes prediction
targets (Tensor): targets for positive samples
weights (Tensor): weights for each positive samples
Return:
loss (Tensor): location loss
"""
plw = pred[:, 0]
pth = pred[:, 1]
prw = pred[:, 2]
pbh = pred[:, 3]
tlw = targets[:, 0]
tth = targets[:, 1]
trw = targets[:, 2]
tbh = targets[:, 3]
tlw.stop_gradient = True
trw.stop_gradient = True
tth.stop_gradient = True
tbh.stop_gradient = True
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
clw = paddle.maximum(plw, tlw)
crw = paddle.maximum(prw, trw)
cth = paddle.maximum(pth, tth)
cbh = paddle.maximum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
ious = ious
if self.iou_loss_type.lower() == "linear_iou":
loss = 1.0 - ious
elif self.iou_loss_type.lower() == "giou":
area_uniou = area_predict + area_target - area_inter
area_circum = (clw + crw) * (cth + cbh) + 1e-7
giou = ious - (area_circum - area_uniou) / area_circum
loss = 1.0 - giou
elif self.iou_loss_type.lower() == "iou":
loss = 0.0 - paddle.log(ious)
else:
raise KeyError
if weights is not None:
loss = loss * weights
loss = paddle.sum(loss)
if avg_factor is not None:
loss = loss / avg_factor
return loss
# calcualate iou between bbox and target
def bbox_overlap_align(self, pred, targets):
assert pred.shape[0] == targets.shape[0], \
'the pred should be aligned with target.'
plw = pred[:, 0]
pth = pred[:, 1]
prw = pred[:, 2]
pbh = pred[:, 3]
tlw = targets[:, 0]
tth = targets[:, 1]
trw = targets[:, 2]
tbh = targets[:, 3]
ilw = paddle.minimum(plw, tlw)
irw = paddle.minimum(prw, trw)
ith = paddle.minimum(pth, tth)
ibh = paddle.minimum(pbh, tbh)
area_predict = (plw + prw) * (pth + pbh)
area_target = (tlw + trw) * (tth + tbh)
area_inter = (ilw + irw) * (ith + ibh)
ious = (area_inter + 1.0) / (
area_predict + area_target - area_inter + 1.0)
return ious
# cls loss: iou-based soft lable with joint iou
def quality_focal_loss(self,
stu_cls,
targets,
quality=None,
weights=None,
alpha=0.75,
gamma=2.0,
avg_factor='sum'):
stu_cls = F.sigmoid(stu_cls)
if quality is not None:
stu_cls = stu_cls * F.sigmoid(quality)
focal_weight = (stu_cls - targets).abs().pow(gamma) * (targets > 0.0).cast('float32') + \
alpha * (stu_cls - targets).abs().pow(gamma) * \
(targets <= 0.0).cast('float32')
loss = F.binary_cross_entropy(
stu_cls, targets, reduction='none') * focal_weight
if weights is not None:
loss = loss * weights.reshape([-1, 1])
loss = paddle.sum(loss)
if avg_factor is not None:
loss = loss / avg_factor
return loss
# generate points according to feature maps
def compute_locations_by_level(self, fpn_stride, h, w):
"""
Compute locations of anchor points of each FPN layer
Return:
Anchor points locations of current FPN feature map
"""
shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
shift_x = paddle.unsqueeze(shift_x, axis=0)
shift_y = paddle.unsqueeze(shift_y, axis=1)
shift_x = paddle.expand(shift_x, shape=[h, w])
shift_y = paddle.expand(shift_y, shape=[h, w])
shift_x = paddle.reshape(shift_x, shape=[-1])
shift_y = paddle.reshape(shift_y, shape=[-1])
location = paddle.stack(
[shift_x, shift_y], axis=-1) + float(fpn_stride) / 2
return location
# decode bbox from ltrb to x1y1x2y2
def decode_bbox(self, ltrb, points):
assert ltrb.shape[0] == points.shape[0], \
"When decoding bbox in one image, the num of loc should be same with points."
bbox_decoding = paddle.stack(
[
points[:, 0] - ltrb[:, 0], points[:, 1] - ltrb[:, 1],
points[:, 0] + ltrb[:, 2], points[:, 1] + ltrb[:, 3]
],
axis=1)
return bbox_decoding
# encode bbox from x1y1x2y2 to ltrb
def encode_bbox(self, bbox, points):
assert bbox.shape[0] == points.shape[0], \
"When encoding bbox in one image, the num of bbox should be same with points."
bbox_encoding = paddle.stack(
[
points[:, 0] - bbox[:, 0], points[:, 1] - bbox[:, 1],
bbox[:, 2] - points[:, 0], bbox[:, 3] - points[:, 1]
],
axis=1)
return bbox_encoding
def calcualate_iou(self, gt_bbox, predict_bbox):
# bbox area
gt_area = (gt_bbox[:, 2] - gt_bbox[:, 0]) * \
(gt_bbox[:, 3] - gt_bbox[:, 1])
predict_area = (predict_bbox[:, 2] - predict_bbox[:, 0]) * \
(predict_bbox[:, 3] - predict_bbox[:, 1])
# overlop area
lt = paddle.fmax(gt_bbox[:, None, :2], predict_bbox[None, :, :2])
rb = paddle.fmin(gt_bbox[:, None, 2:], predict_bbox[None, :, 2:])
wh = paddle.clip(rb - lt, min=0)
overlap = wh[..., 0] * wh[..., 1]
# iou
iou = overlap / (gt_area[:, None] + predict_area[None, :] - overlap)
return iou
# select potential positives from hard negatives
def hard_neg_mining(self,
cls_score,
loc_ltrb,
quality,
pos_ind,
hard_neg_ind,
loc_mask,
loc_targets,
iou_thresh=0.6):
# get points locations and strides
points_list = []
strides_list = []
scale_list = []
scale = [0, 1, 2, 3, 4]
for fpn_scale, fpn_stride, HW in zip(scale, self.fpn_stride,
self.lvl_hw):
h, w = HW
lvl_points = self.compute_locations_by_level(fpn_stride, h, w)
points_list.append(lvl_points)
lvl_strides = paddle.full([h * w, 1], fpn_stride)
strides_list.append(lvl_strides)
lvl_scales = paddle.full([h * w, 1], fpn_scale)
scale_list.append(lvl_scales)
points = paddle.concat(points_list, axis=0)
strides = paddle.concat(strides_list, axis=0)
scales = paddle.concat(scale_list, axis=0)
# cls scores
cls_vals = F.sigmoid(cls_score) * F.sigmoid(quality)
max_vals = paddle.max(cls_vals, axis=-1)
class_ind = paddle.argmax(cls_vals, axis=-1)
### calculate iou between positive and hard negative
# decode pos bbox
pos_cls = max_vals[pos_ind]
pos_loc = loc_ltrb[pos_ind].reshape([-1, 4])
pos_strides = strides[pos_ind]
pos_points = points[pos_ind].reshape([-1, 2])
pos_loc = pos_loc * pos_strides
pos_bbox = self.decode_bbox(pos_loc, pos_points)
pos_scales = scales[pos_ind]
# decode hard negative bbox
hard_neg_loc = loc_ltrb[hard_neg_ind].reshape([-1, 4])
hard_neg_strides = strides[hard_neg_ind]
hard_neg_points = points[hard_neg_ind].reshape([-1, 2])
hard_neg_loc = hard_neg_loc * hard_neg_strides
hard_neg_bbox = self.decode_bbox(hard_neg_loc, hard_neg_points)
hard_neg_scales = scales[hard_neg_ind]
# iou between pos bbox and hard negative bbox
hard_neg_pos_iou = self.calcualate_iou(hard_neg_bbox, pos_bbox)
### select potential positives from hard negatives
# scale flag
scale_temp = paddle.abs(
pos_scales.reshape([-1])[None, :] - hard_neg_scales.reshape([-1])
[:, None])
scale_flag = (scale_temp <= 1.)
# iou flag
iou_flag = (hard_neg_pos_iou >= iou_thresh)
# same class flag
pos_class = class_ind[pos_ind]
hard_neg_class = class_ind[hard_neg_ind]
class_flag = pos_class[None, :] - hard_neg_class[:, None]
class_flag = (class_flag == 0)
# hard negative point inside positive bbox flag
ltrb_temp = paddle.stack(
[
hard_neg_points[:, None, 0] - pos_bbox[None, :, 0],
hard_neg_points[:, None, 1] - pos_bbox[None, :, 1],
pos_bbox[None, :, 2] - hard_neg_points[:, None, 0],
pos_bbox[None, :, 3] - hard_neg_points[:, None, 1]
],
axis=-1)
inside_flag = ltrb_temp.min(axis=-1) > 0
# reset iou
valid_flag = (iou_flag & class_flag & inside_flag & scale_flag)
invalid_iou = paddle.zeros_like(hard_neg_pos_iou)
hard_neg_pos_iou = paddle.where(valid_flag, hard_neg_pos_iou,
invalid_iou)
pos_hard_neg_max_iou = hard_neg_pos_iou.max(axis=-1)
# selece potential pos
potential_pos_ind = (pos_hard_neg_max_iou > 0.)
num_potential_pos = paddle.nonzero(potential_pos_ind).shape[0]
if num_potential_pos == 0:
return None
### calculate loc target:aggregate all matching bboxes as the bbox targets of potential pos
# prepare data
potential_points = hard_neg_points[potential_pos_ind].reshape([-1, 2])
potential_strides = hard_neg_strides[potential_pos_ind]
potential_valid_flag = valid_flag[potential_pos_ind]
potential_pos_ind = hard_neg_ind[potential_pos_ind]
# get cls and box of matching positives
pos_cls = max_vals[pos_ind]
expand_pos_bbox = paddle.expand(
pos_bbox,
shape=[num_potential_pos, pos_bbox.shape[0], pos_bbox.shape[1]])
expand_pos_cls = paddle.expand(
pos_cls, shape=[num_potential_pos, pos_cls.shape[0]])
invalid_cls = paddle.zeros_like(expand_pos_cls)
expand_pos_cls = paddle.where(potential_valid_flag, expand_pos_cls,
invalid_cls)
expand_pos_cls = paddle.unsqueeze(expand_pos_cls, axis=-1)
# aggregate box based on cls_score
agg_bbox = (expand_pos_bbox * expand_pos_cls).sum(axis=1) \
/ expand_pos_cls.sum(axis=1)
agg_ltrb = self.encode_bbox(agg_bbox, potential_points)
agg_ltrb = agg_ltrb / potential_strides
# loc target for all pos
loc_targets[potential_pos_ind] = agg_ltrb
loc_mask[potential_pos_ind] = 1.
return loc_mask, loc_targets
# get training targets
def get_targets_per_img(self, tea_cls, tea_loc, tea_iou, stu_cls, stu_loc,
stu_iou):
### sample selection
# prepare datas
tea_cls_scores = F.sigmoid(tea_cls) * F.sigmoid(tea_iou)
class_ind = paddle.argmax(tea_cls_scores, axis=-1)
max_vals = paddle.max(tea_cls_scores, axis=-1)
cls_mask = paddle.zeros_like(
max_vals
) # set cls valid mask: pos is 1, hard_negative and negative are 0.
num_pos, num_hard_neg = 0, 0
# mean-std selection
# using nonzero to turn index from bool to int, because the index will be used to compose two-dim index in following.
# using squeeze rather than reshape to avoid errors when no score is larger than thresh.
candidate_ind = paddle.nonzero(max_vals >= 0.1).squeeze(axis=-1)
num_candidate = candidate_ind.shape[0]
if num_candidate > 0:
# pos thresh = mean + std to select pos samples
candidate_score = max_vals[candidate_ind]
candidate_score_mean = candidate_score.mean()
candidate_score_std = candidate_score.std()
pos_thresh = (candidate_score_mean + candidate_score_std).clip(
max=0.4)
# select pos
pos_ind = paddle.nonzero(max_vals >= pos_thresh).squeeze(axis=-1)
num_pos = pos_ind.shape[0]
# select hard negatives as potential pos
hard_neg_ind = (max_vals >= 0.1) & (max_vals < pos_thresh)
hard_neg_ind = paddle.nonzero(hard_neg_ind).squeeze(axis=-1)
num_hard_neg = hard_neg_ind.shape[0]
# if not positive, directly select top-10 as pos.
if (num_pos == 0):
num_pos = 10
_, pos_ind = paddle.topk(max_vals, k=num_pos)
cls_mask[pos_ind] = 1.
### Consistency Regularization Training targets
# cls targets
pos_class_ind = class_ind[pos_ind]
cls_targets = paddle.zeros_like(tea_cls)
cls_targets[pos_ind, pos_class_ind] = tea_cls_scores[pos_ind,
pos_class_ind]
# hard negative cls target
if num_hard_neg != 0:
cls_targets[hard_neg_ind] = tea_cls_scores[hard_neg_ind]
# loc targets
loc_targets = paddle.zeros_like(tea_loc)
loc_targets[pos_ind] = tea_loc[pos_ind]
# iou targets
iou_targets = paddle.zeros(
shape=[tea_iou.shape[0]], dtype=tea_iou.dtype)
iou_targets[pos_ind] = F.sigmoid(
paddle.squeeze(
tea_iou, axis=-1)[pos_ind])
loc_mask = cls_mask.clone()
# select potential positive from hard negatives for loc_task training
if (num_hard_neg > 0) and self.hard_neg_mining_flag:
results = self.hard_neg_mining(tea_cls, tea_loc, tea_iou, pos_ind,
hard_neg_ind, loc_mask, loc_targets)
if results is not None:
loc_mask, loc_targets = results
loc_pos_ind = paddle.nonzero(loc_mask > 0.).squeeze(axis=-1)
iou_targets[loc_pos_ind] = F.sigmoid(
paddle.squeeze(
tea_iou, axis=-1)[loc_pos_ind])
return cls_mask, loc_mask, \
cls_targets, loc_targets, iou_targets
def forward(self, student_prediction, teacher_prediction):
stu_cls_lvl, stu_loc_lvl, stu_iou_lvl = student_prediction
tea_cls_lvl, tea_loc_lvl, tea_iou_lvl, self.fpn_stride = teacher_prediction
# H and W of level (used for aggregating targets)
self.lvl_hw = []
for t in tea_cls_lvl:
_, _, H, W = t.shape
self.lvl_hw.append([H, W])
# levels to images
stu_cls_img = levels_to_images(stu_cls_lvl)
stu_loc_img = levels_to_images(stu_loc_lvl)
stu_iou_img = levels_to_images(stu_iou_lvl)
tea_cls_img = levels_to_images(tea_cls_lvl)
tea_loc_img = levels_to_images(tea_loc_lvl)
tea_iou_img = levels_to_images(tea_iou_lvl)
with paddle.no_grad():
cls_mask, loc_mask, \
cls_targets, loc_targets, iou_targets = multi_apply(
self.get_targets_per_img,
tea_cls_img,
tea_loc_img,
tea_iou_img,
stu_cls_img,
stu_loc_img,
stu_iou_img
)
# flatten preditction
stu_cls = paddle.concat(stu_cls_img, axis=0)
stu_loc = paddle.concat(stu_loc_img, axis=0)
stu_iou = paddle.concat(stu_iou_img, axis=0)
# flatten targets
cls_mask = paddle.concat(cls_mask, axis=0)
loc_mask = paddle.concat(loc_mask, axis=0)
cls_targets = paddle.concat(cls_targets, axis=0)
loc_targets = paddle.concat(loc_targets, axis=0)
iou_targets = paddle.concat(iou_targets, axis=0)
### Training Weights and avg factor
# find positives
cls_pos_ind = paddle.nonzero(cls_mask > 0.).squeeze(axis=-1)
loc_pos_ind = paddle.nonzero(loc_mask > 0.).squeeze(axis=-1)
# cls weight
cls_sample_weights = paddle.ones([cls_targets.shape[0]])
cls_avg_factor = paddle.max(cls_targets[cls_pos_ind],
axis=-1).sum().item()
# loc weight
loc_sample_weights = paddle.max(cls_targets[loc_pos_ind], axis=-1)
loc_avg_factor = loc_sample_weights.sum().item()
# iou weight
iou_sample_weights = paddle.ones([loc_pos_ind.shape[0]])
iou_avg_factor = loc_pos_ind.shape[0]
### unsupervised loss
# cls loss
loss_cls = self.quality_focal_loss(
stu_cls,
cls_targets,
quality=stu_iou,
weights=cls_sample_weights,
avg_factor=cls_avg_factor) * self.cls_weight
# iou loss
pos_stu_iou = paddle.squeeze(stu_iou, axis=-1)[loc_pos_ind]
pos_iou_targets = iou_targets[loc_pos_ind]
loss_iou = F.binary_cross_entropy(