-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathres2net.py
357 lines (321 loc) · 11.6 KB
/
res2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from numbers import Integral
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ..shape_spec import ShapeSpec
from .resnet import ConvNormLayer
__all__ = ['Res2Net', 'Res2NetC5']
Res2Net_cfg = {
50: [3, 4, 6, 3],
101: [3, 4, 23, 3],
152: [3, 8, 36, 3],
200: [3, 12, 48, 3]
}
class BottleNeck(nn.Layer):
def __init__(self,
ch_in,
ch_out,
stride,
shortcut,
width,
scales=4,
variant='b',
groups=1,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
super(BottleNeck, self).__init__()
self.shortcut = shortcut
self.scales = scales
self.stride = stride
if not shortcut:
if variant == 'd' and stride == 2:
self.branch1 = nn.Sequential()
self.branch1.add_sublayer(
'pool',
nn.AvgPool2D(
kernel_size=2, stride=2, padding=0, ceil_mode=True))
self.branch1.add_sublayer(
'conv',
ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr))
else:
self.branch1 = ConvNormLayer(
ch_in=ch_in,
ch_out=ch_out,
filter_size=1,
stride=stride,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2a = ConvNormLayer(
ch_in=ch_in,
ch_out=width * scales,
filter_size=1,
stride=stride if variant == 'a' else 1,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
self.branch2b = nn.LayerList([
ConvNormLayer(
ch_in=width,
ch_out=width,
filter_size=3,
stride=1 if variant == 'a' else stride,
groups=groups,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr,
dcn_v2=dcn_v2) for _ in range(self.scales - 1)
])
self.branch2c = ConvNormLayer(
ch_in=width * scales,
ch_out=ch_out,
filter_size=1,
stride=1,
groups=1,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=lr)
def forward(self, inputs):
out = self.branch2a(inputs)
feature_split = paddle.split(out, self.scales, 1)
out_split = []
for i in range(self.scales - 1):
if i == 0 or self.stride == 2:
out_split.append(self.branch2b[i](feature_split[i]))
else:
out_split.append(self.branch2b[i](paddle.add(feature_split[i],
out_split[-1])))
if self.stride == 1:
out_split.append(feature_split[-1])
else:
out_split.append(F.avg_pool2d(feature_split[-1], 3, self.stride, 1))
out = self.branch2c(paddle.concat(out_split, 1))
if self.shortcut:
short = inputs
else:
short = self.branch1(inputs)
out = paddle.add(out, short)
out = F.relu(out)
return out
class Blocks(nn.Layer):
def __init__(self,
ch_in,
ch_out,
count,
stage_num,
width,
scales=4,
variant='b',
groups=1,
lr=1.0,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
dcn_v2=False):
super(Blocks, self).__init__()
self.blocks = nn.Sequential()
for i in range(count):
self.blocks.add_sublayer(
str(i),
BottleNeck(
ch_in=ch_in if i == 0 else ch_out,
ch_out=ch_out,
stride=2 if i == 0 and stage_num != 2 else 1,
shortcut=False if i == 0 else True,
width=width * (2**(stage_num - 2)),
scales=scales,
variant=variant,
groups=groups,
lr=lr,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=dcn_v2))
def forward(self, inputs):
return self.blocks(inputs)
@register
@serializable
class Res2Net(nn.Layer):
"""
Res2Net, see https://arxiv.org/abs/1904.01169
Args:
depth (int): Res2Net depth, should be 50, 101, 152, 200.
width (int): Res2Net width
scales (int): Res2Net scale
variant (str): Res2Net variant, supports 'a', 'b', 'c', 'd' currently
lr_mult_list (list): learning rate ratio of different resnet stages(2,3,4,5),
lower learning rate ratio is need for pretrained model
got using distillation(default as [1.0, 1.0, 1.0, 1.0]).
groups (int): The groups number of the Conv Layer.
norm_type (str): normalization type, 'bn' or 'sync_bn'
norm_decay (float): weight decay for normalization layer weights
freeze_norm (bool): freeze normalization layers
freeze_at (int): freeze the backbone at which stage
return_idx (list): index of stages whose feature maps are returned,
index 0 stands for res2
dcn_v2_stages (list): index of stages who select deformable conv v2
num_stages (int): number of stages created
"""
__shared__ = ['norm_type']
def __init__(self,
depth=50,
width=26,
scales=4,
variant='b',
lr_mult_list=[1.0, 1.0, 1.0, 1.0],
groups=1,
norm_type='bn',
norm_decay=0.,
freeze_norm=True,
freeze_at=0,
return_idx=[0, 1, 2, 3],
dcn_v2_stages=[-1],
num_stages=4):
super(Res2Net, self).__init__()
self._model_type = 'Res2Net' if groups == 1 else 'Res2NeXt'
assert depth in [50, 101, 152, 200], \
"depth {} not in [50, 101, 152, 200]"
assert variant in ['a', 'b', 'c', 'd'], "invalid Res2Net variant"
assert num_stages >= 1 and num_stages <= 4
self.depth = depth
self.variant = variant
self.norm_type = norm_type
self.norm_decay = norm_decay
self.freeze_norm = freeze_norm
self.freeze_at = freeze_at
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert max(return_idx) < num_stages, \
'the maximum return index must smaller than num_stages, ' \
'but received maximum return index is {} and num_stages ' \
'is {}'.format(max(return_idx), num_stages)
self.return_idx = return_idx
self.num_stages = num_stages
assert len(lr_mult_list) == 4, \
"lr_mult_list length must be 4 but got {}".format(len(lr_mult_list))
if isinstance(dcn_v2_stages, Integral):
dcn_v2_stages = [dcn_v2_stages]
assert max(dcn_v2_stages) < num_stages
self.dcn_v2_stages = dcn_v2_stages
block_nums = Res2Net_cfg[depth]
# C1 stage
if self.variant in ['c', 'd']:
conv_def = [
[3, 32, 3, 2, "conv1_1"],
[32, 32, 3, 1, "conv1_2"],
[32, 64, 3, 1, "conv1_3"],
]
else:
conv_def = [[3, 64, 7, 2, "conv1"]]
self.res1 = nn.Sequential()
for (c_in, c_out, k, s, _name) in conv_def:
self.res1.add_sublayer(
_name,
ConvNormLayer(
ch_in=c_in,
ch_out=c_out,
filter_size=k,
stride=s,
groups=1,
act='relu',
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
lr=1.0))
self._in_channels = [64, 256, 512, 1024]
self._out_channels = [256, 512, 1024, 2048]
self._out_strides = [4, 8, 16, 32]
# C2-C5 stages
self.res_layers = []
for i in range(num_stages):
lr_mult = lr_mult_list[i]
stage_num = i + 2
self.res_layers.append(
self.add_sublayer(
"res{}".format(stage_num),
Blocks(
self._in_channels[i],
self._out_channels[i],
count=block_nums[i],
stage_num=stage_num,
width=width,
scales=scales,
groups=groups,
lr=lr_mult,
norm_type=norm_type,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
dcn_v2=(i in self.dcn_v2_stages))))
@property
def out_shape(self):
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]
def forward(self, inputs):
x = inputs['image']
res1 = self.res1(x)
x = F.max_pool2d(res1, kernel_size=3, stride=2, padding=1)
outs = []
for idx, stage in enumerate(self.res_layers):
x = stage(x)
if idx == self.freeze_at:
x.stop_gradient = True
if idx in self.return_idx:
outs.append(x)
return outs
@register
class Res2NetC5(nn.Layer):
def __init__(self, depth=50, width=26, scales=4, variant='b'):
super(Res2NetC5, self).__init__()
feat_in, feat_out = [1024, 2048]
self.res5 = Blocks(
feat_in,
feat_out,
count=3,
stage_num=5,
width=width,
scales=scales,
variant=variant)
self.feat_out = feat_out
@property
def out_shape(self):
return [ShapeSpec(
channels=self.feat_out,
stride=32, )]
def forward(self, roi_feat, stage=0):
y = self.res5(roi_feat)
return y