-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathhrnet.py
869 lines (769 loc) · 29 KB
/
hrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import AdaptiveAvgPool2D, Linear
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Uniform
from numbers import Integral
import math
from ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HRNet']
class ConvNormLayer(nn.Layer):
def __init__(self,
ch_in,
ch_out,
filter_size,
stride=1,
norm_type='bn',
norm_groups=32,
use_dcn=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=False,
act=None,
name=None):
super(ConvNormLayer, self).__init__()
assert norm_type in ['bn', 'sync_bn', 'gn']
self.act = act
self.conv = nn.Conv2D(
in_channels=ch_in,
out_channels=ch_out,
kernel_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=1,
weight_attr=ParamAttr(initializer=Normal(
mean=0., std=0.01)),
bias_attr=False)
norm_lr = 0. if freeze_norm else 1.
param_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
bias_attr = ParamAttr(
learning_rate=norm_lr, regularizer=L2Decay(norm_decay))
global_stats = True if freeze_norm else None
if norm_type in ['bn', 'sync_bn']:
self.norm = nn.BatchNorm2D(
ch_out,
momentum=norm_momentum,
weight_attr=param_attr,
bias_attr=bias_attr,
use_global_stats=global_stats)
elif norm_type == 'gn':
self.norm = nn.GroupNorm(
num_groups=norm_groups,
num_channels=ch_out,
weight_attr=param_attr,
bias_attr=bias_attr)
norm_params = self.norm.parameters()
if freeze_norm:
for param in norm_params:
param.stop_gradient = True
def forward(self, inputs):
out = self.conv(inputs)
out = self.norm(out)
if self.act == 'relu':
out = F.relu(out)
return out
class Layer1(nn.Layer):
def __init__(self,
num_channels,
has_se=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Layer1, self).__init__()
self.bottleneck_block_list = []
for i in range(4):
bottleneck_block = self.add_sublayer(
"block_{}_{}".format(name, i + 1),
BottleneckBlock(
num_channels=num_channels if i == 0 else 256,
num_filters=64,
has_se=has_se,
stride=1,
downsample=True if i == 0 else False,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.bottleneck_block_list.append(bottleneck_block)
def forward(self, input):
conv = input
for block_func in self.bottleneck_block_list:
conv = block_func(conv)
return conv
class TransitionLayer(nn.Layer):
def __init__(self,
in_channels,
out_channels,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(TransitionLayer, self).__init__()
num_in = len(in_channels)
num_out = len(out_channels)
out = []
self.conv_bn_func_list = []
for i in range(num_out):
residual = None
if i < num_in:
if in_channels[i] != out_channels[i]:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[i],
ch_out=out_channels[i],
filter_size=3,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
else:
residual = self.add_sublayer(
"transition_{}_layer_{}".format(name, i + 1),
ConvNormLayer(
ch_in=in_channels[-1],
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name=name + '_layer_' + str(i + 1)))
self.conv_bn_func_list.append(residual)
def forward(self, input):
outs = []
for idx, conv_bn_func in enumerate(self.conv_bn_func_list):
if conv_bn_func is None:
outs.append(input[idx])
else:
if idx < len(input):
outs.append(conv_bn_func(input[idx]))
else:
outs.append(conv_bn_func(input[-1]))
return outs
class Branches(nn.Layer):
def __init__(self,
block_num,
in_channels,
out_channels,
has_se=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(Branches, self).__init__()
self.basic_block_list = []
for i in range(len(out_channels)):
self.basic_block_list.append([])
for j in range(block_num):
in_ch = in_channels[i] if j == 0 else out_channels[i]
basic_block_func = self.add_sublayer(
"bb_{}_branch_layer_{}_{}".format(name, i + 1, j + 1),
BasicBlock(
num_channels=in_ch,
num_filters=out_channels[i],
has_se=has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_branch_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.basic_block_list[i].append(basic_block_func)
def forward(self, inputs):
outs = []
for idx, input in enumerate(inputs):
conv = input
basic_block_list = self.basic_block_list[idx]
for basic_block_func in basic_block_list:
conv = basic_block_func(conv)
outs.append(conv)
return outs
class BottleneckBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se,
stride=1,
downsample=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BottleneckBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=1,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
stride=stride,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + "_conv2")
self.conv3 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters * 4,
filter_size=1,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_conv3")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters * 4,
num_filters=num_filters * 4,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
conv3 = self.conv3(conv2)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv3 = self.se(conv3)
y = paddle.add(x=residual, y=conv3)
y = F.relu(y)
return y
class BasicBlock(nn.Layer):
def __init__(self,
num_channels,
num_filters,
stride=1,
has_se=False,
downsample=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(BasicBlock, self).__init__()
self.has_se = has_se
self.downsample = downsample
self.conv1 = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters,
filter_size=3,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=stride,
act="relu",
name=name + "_conv1")
self.conv2 = ConvNormLayer(
ch_in=num_filters,
ch_out=num_filters,
filter_size=3,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
stride=1,
act=None,
name=name + "_conv2")
if self.downsample:
self.conv_down = ConvNormLayer(
ch_in=num_channels,
ch_out=num_filters * 4,
filter_size=1,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + "_downsample")
if self.has_se:
self.se = SELayer(
num_channels=num_filters,
num_filters=num_filters,
reduction_ratio=16,
name='fc' + name)
def forward(self, input):
residual = input
conv1 = self.conv1(input)
conv2 = self.conv2(conv1)
if self.downsample:
residual = self.conv_down(input)
if self.has_se:
conv2 = self.se(conv2)
y = paddle.add(x=residual, y=conv2)
y = F.relu(y)
return y
class SELayer(nn.Layer):
def __init__(self, num_channels, num_filters, reduction_ratio, name=None):
super(SELayer, self).__init__()
self.pool2d_gap = AdaptiveAvgPool2D(1)
self._num_channels = num_channels
med_ch = int(num_channels / reduction_ratio)
stdv = 1.0 / math.sqrt(num_channels * 1.0)
self.squeeze = Linear(
num_channels,
med_ch,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
stdv = 1.0 / math.sqrt(med_ch * 1.0)
self.excitation = Linear(
med_ch,
num_filters,
weight_attr=ParamAttr(initializer=Uniform(-stdv, stdv)))
def forward(self, input):
pool = self.pool2d_gap(input)
pool = paddle.squeeze(pool, axis=[2, 3])
squeeze = self.squeeze(pool)
squeeze = F.relu(squeeze)
excitation = self.excitation(squeeze)
excitation = F.sigmoid(excitation)
excitation = paddle.unsqueeze(excitation, axis=[2, 3])
out = input * excitation
return out
class Stage(nn.Layer):
def __init__(self,
num_channels,
num_modules,
num_filters,
has_se=False,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
multi_scale_output=True,
name=None):
super(Stage, self).__init__()
self._num_modules = num_modules
self.stage_func_list = []
for i in range(num_modules):
if i == num_modules - 1 and not multi_scale_output:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=False,
name=name + '_' + str(i + 1)))
else:
stage_func = self.add_sublayer(
"stage_{}_{}".format(name, i + 1),
HighResolutionModule(
num_channels=num_channels,
num_filters=num_filters,
has_se=has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_' + str(i + 1)))
self.stage_func_list.append(stage_func)
def forward(self, input):
out = input
for idx in range(self._num_modules):
out = self.stage_func_list[idx](out)
return out
class HighResolutionModule(nn.Layer):
def __init__(self,
num_channels,
num_filters,
has_se=False,
multi_scale_output=True,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(HighResolutionModule, self).__init__()
self.branches_func = Branches(
block_num=4,
in_channels=num_channels,
out_channels=num_filters,
has_se=has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
self.fuse_func = FuseLayers(
in_channels=num_filters,
out_channels=num_filters,
multi_scale_output=multi_scale_output,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name)
def forward(self, input):
out = self.branches_func(input)
out = self.fuse_func(out)
return out
class FuseLayers(nn.Layer):
def __init__(self,
in_channels,
out_channels,
multi_scale_output=True,
norm_momentum=0.9,
norm_decay=0.,
freeze_norm=True,
name=None):
super(FuseLayers, self).__init__()
self._actual_ch = len(in_channels) if multi_scale_output else 1
self._in_channels = in_channels
self.residual_func_list = []
for i in range(self._actual_ch):
for j in range(len(in_channels)):
residual_func = None
if j > i:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}".format(name, i + 1, j + 1),
ConvNormLayer(
ch_in=in_channels[j],
ch_out=out_channels[i],
filter_size=1,
stride=1,
act=None,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1)))
self.residual_func_list.append(residual_func)
elif j < i:
pre_num_filters = in_channels[j]
for k in range(i - j):
if k == i - j - 1:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[i],
filter_size=3,
stride=2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act=None,
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[i]
else:
residual_func = self.add_sublayer(
"residual_{}_layer_{}_{}_{}".format(
name, i + 1, j + 1, k + 1),
ConvNormLayer(
ch_in=pre_num_filters,
ch_out=out_channels[j],
filter_size=3,
stride=2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act="relu",
name=name + '_layer_' + str(i + 1) + '_' +
str(j + 1) + '_' + str(k + 1)))
pre_num_filters = out_channels[j]
self.residual_func_list.append(residual_func)
def forward(self, input):
outs = []
residual_func_idx = 0
for i in range(self._actual_ch):
residual = input[i]
for j in range(len(self._in_channels)):
if j > i:
y = self.residual_func_list[residual_func_idx](input[j])
residual_func_idx += 1
y = F.interpolate(y, scale_factor=2**(j - i))
residual = paddle.add(x=residual, y=y)
elif j < i:
y = input[j]
for k in range(i - j):
y = self.residual_func_list[residual_func_idx](y)
residual_func_idx += 1
residual = paddle.add(x=residual, y=y)
residual = F.relu(residual)
outs.append(residual)
return outs
@register
class HRNet(nn.Layer):
"""
HRNet, see https://arxiv.org/abs/1908.07919
Args:
width (int): the width of HRNet
has_se (bool): whether to add SE block for each stage
freeze_at (int): the stage to freeze
freeze_norm (bool): whether to freeze norm in HRNet
norm_momentum (float): momentum of BatchNorm
norm_decay (float): weight decay for normalization layer weights
return_idx (List): the stage to return
upsample (bool): whether to upsample and concat the backbone feats
"""
def __init__(self,
width=18,
has_se=False,
freeze_at=0,
freeze_norm=True,
norm_momentum=0.9,
norm_decay=0.,
return_idx=[0, 1, 2, 3],
upsample=False,
downsample=False):
super(HRNet, self).__init__()
self.width = width
self.has_se = has_se
if isinstance(return_idx, Integral):
return_idx = [return_idx]
assert len(return_idx) > 0, "need one or more return index"
self.freeze_at = freeze_at
self.return_idx = return_idx
self.upsample = upsample
self.downsample = downsample
self.channels = {
18: [[18, 36], [18, 36, 72], [18, 36, 72, 144]],
30: [[30, 60], [30, 60, 120], [30, 60, 120, 240]],
32: [[32, 64], [32, 64, 128], [32, 64, 128, 256]],
40: [[40, 80], [40, 80, 160], [40, 80, 160, 320]],
44: [[44, 88], [44, 88, 176], [44, 88, 176, 352]],
48: [[48, 96], [48, 96, 192], [48, 96, 192, 384]],
60: [[60, 120], [60, 120, 240], [60, 120, 240, 480]],
64: [[64, 128], [64, 128, 256], [64, 128, 256, 512]]
}
channels_2, channels_3, channels_4 = self.channels[width]
num_modules_2, num_modules_3, num_modules_4 = 1, 4, 3
self._out_channels = [sum(channels_4)] if self.upsample else channels_4
self._out_strides = [4] if self.upsample else [4, 8, 16, 32]
self.conv_layer1_1 = ConvNormLayer(
ch_in=3,
ch_out=64,
filter_size=3,
stride=2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_1")
self.conv_layer1_2 = ConvNormLayer(
ch_in=64,
ch_out=64,
filter_size=3,
stride=2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
act='relu',
name="layer1_2")
self.la1 = Layer1(
num_channels=64,
has_se=has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="layer2")
self.tr1 = TransitionLayer(
in_channels=[256],
out_channels=channels_2,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr1")
self.st2 = Stage(
num_channels=channels_2,
num_modules=num_modules_2,
num_filters=channels_2,
has_se=self.has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st2")
self.tr2 = TransitionLayer(
in_channels=channels_2,
out_channels=channels_3,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr2")
self.st3 = Stage(
num_channels=channels_3,
num_modules=num_modules_3,
num_filters=channels_3,
has_se=self.has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="st3")
self.tr3 = TransitionLayer(
in_channels=channels_3,
out_channels=channels_4,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
name="tr3")
self.st4 = Stage(
num_channels=channels_4,
num_modules=num_modules_4,
num_filters=channels_4,
has_se=self.has_se,
norm_momentum=norm_momentum,
norm_decay=norm_decay,
freeze_norm=freeze_norm,
multi_scale_output=len(return_idx) > 1,
name="st4")
if self.downsample:
self.incre_modules, self.downsamp_modules, \
self.final_layer = self._make_head(channels_4, norm_momentum=norm_momentum, has_se=self.has_se)
def _make_layer(self,
block,
inplanes,
planes,
blocks,
stride=1,
norm_momentum=0.9,
has_se=False,
name=None):
downsample = None
if stride != 1 or inplanes != planes * 4:
downsample = True
layers = []
layers.append(
block(
inplanes,
planes,
has_se,
stride,
downsample,
norm_momentum=norm_momentum,
freeze_norm=False,
name=name + "_s0"))
inplanes = planes * 4
for i in range(1, blocks):
layers.append(
block(
inplanes,
planes,
has_se,
norm_momentum=norm_momentum,
freeze_norm=False,
name=name + "_s" + str(i)))
return nn.Sequential(*layers)
def _make_head(self, pre_stage_channels, norm_momentum=0.9, has_se=False):
head_block = BottleneckBlock
head_channels = [32, 64, 128, 256]
# Increasing the #channels on each resolution
# from C, 2C, 4C, 8C to 128, 256, 512, 1024
incre_modules = []
for i, channels in enumerate(pre_stage_channels):
incre_module = self._make_layer(
head_block,
channels,
head_channels[i],
1,
stride=1,
norm_momentum=norm_momentum,
has_se=has_se,
name='incre' + str(i))
incre_modules.append(incre_module)
incre_modules = nn.LayerList(incre_modules)
# downsampling modules
downsamp_modules = []
for i in range(len(pre_stage_channels) - 1):
in_channels = head_channels[i] * 4
out_channels = head_channels[i + 1] * 4
downsamp_module = nn.Sequential(
nn.Conv2D(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=2,
padding=1),
nn.BatchNorm2D(
out_channels, momentum=norm_momentum),
nn.ReLU())
downsamp_modules.append(downsamp_module)
downsamp_modules = nn.LayerList(downsamp_modules)
final_layer = nn.Sequential(
nn.Conv2D(
in_channels=head_channels[3] * 4,
out_channels=2048,
kernel_size=1,
stride=1,
padding=0),
nn.BatchNorm2D(
2048, momentum=norm_momentum),
nn.ReLU())
return incre_modules, downsamp_modules, final_layer
def forward(self, inputs):
x = inputs['image']
conv1 = self.conv_layer1_1(x)
conv2 = self.conv_layer1_2(conv1)
la1 = self.la1(conv2)
tr1 = self.tr1([la1])
st2 = self.st2(tr1)
tr2 = self.tr2(st2)
st3 = self.st3(tr2)
tr3 = self.tr3(st3)
st4 = self.st4(tr3)
if self.upsample:
# Upsampling
x0_h, x0_w = st4[0].shape[2:4]
x1 = F.upsample(st4[1], size=(x0_h, x0_w), mode='bilinear')
x2 = F.upsample(st4[2], size=(x0_h, x0_w), mode='bilinear')
x3 = F.upsample(st4[3], size=(x0_h, x0_w), mode='bilinear')
x = paddle.concat([st4[0], x1, x2, x3], 1)
return x
if self.downsample:
y = self.incre_modules[0](st4[0])
for i in range(len(self.downsamp_modules)):
y = self.incre_modules[i+1](st4[i+1]) + \
self.downsamp_modules[i](y)
y = self.final_layer(y)
return y
res = []
for i, layer in enumerate(st4):
if i == self.freeze_at:
layer.stop_gradient = True
if i in self.return_idx:
res.append(layer)
return res
@property
def out_shape(self):
if self.upsample:
self.return_idx = [0]
return [
ShapeSpec(
channels=self._out_channels[i], stride=self._out_strides[i])
for i in self.return_idx
]