-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathhardnet.py
226 lines (193 loc) · 6.8 KB
/
hardnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from ppdet.core.workspace import register
from ..shape_spec import ShapeSpec
__all__ = ['HarDNet']
def ConvLayer(in_channels,
out_channels,
kernel_size=3,
stride=1,
bias_attr=False):
layer = nn.Sequential(
('conv', nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size // 2,
groups=1,
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)),
('relu', nn.ReLU6()))
return layer
def DWConvLayer(in_channels,
out_channels,
kernel_size=3,
stride=1,
bias_attr=False):
layer = nn.Sequential(
('dwconv', nn.Conv2D(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1,
groups=out_channels,
bias_attr=bias_attr)), ('norm', nn.BatchNorm2D(out_channels)))
return layer
def CombConvLayer(in_channels, out_channels, kernel_size=1, stride=1):
layer = nn.Sequential(
('layer1', ConvLayer(
in_channels, out_channels, kernel_size=kernel_size)),
('layer2', DWConvLayer(
out_channels, out_channels, stride=stride)))
return layer
class HarDBlock(nn.Layer):
def __init__(self,
in_channels,
growth_rate,
grmul,
n_layers,
keepBase=False,
residual_out=False,
dwconv=False):
super().__init__()
self.keepBase = keepBase
self.links = []
layers_ = []
self.out_channels = 0
for i in range(n_layers):
outch, inch, link = self.get_link(i + 1, in_channels, growth_rate,
grmul)
self.links.append(link)
if dwconv:
layers_.append(CombConvLayer(inch, outch))
else:
layers_.append(ConvLayer(inch, outch))
if (i % 2 == 0) or (i == n_layers - 1):
self.out_channels += outch
self.layers = nn.LayerList(layers_)
def get_out_ch(self):
return self.out_channels
def get_link(self, layer, base_ch, growth_rate, grmul):
if layer == 0:
return base_ch, 0, []
out_channels = growth_rate
link = []
for i in range(10):
dv = 2**i
if layer % dv == 0:
k = layer - dv
link.append(k)
if i > 0:
out_channels *= grmul
out_channels = int(int(out_channels + 1) / 2) * 2
in_channels = 0
for i in link:
ch, _, _ = self.get_link(i, base_ch, growth_rate, grmul)
in_channels += ch
return out_channels, in_channels, link
def forward(self, x):
layers_ = [x]
for layer in range(len(self.layers)):
link = self.links[layer]
tin = []
for i in link:
tin.append(layers_[i])
if len(tin) > 1:
x = paddle.concat(tin, 1)
else:
x = tin[0]
out = self.layers[layer](x)
layers_.append(out)
t = len(layers_)
out_ = []
for i in range(t):
if (i == 0 and self.keepBase) or (i == t - 1) or (i % 2 == 1):
out_.append(layers_[i])
out = paddle.concat(out_, 1)
return out
@register
class HarDNet(nn.Layer):
def __init__(self, depth_wise=False, return_idx=[1, 3, 8, 13], arch=85):
super(HarDNet, self).__init__()
assert arch in [68, 85], "HarDNet-{} is not supported.".format(arch)
if arch == 85:
first_ch = [48, 96]
second_kernel = 3
ch_list = [192, 256, 320, 480, 720]
grmul = 1.7
gr = [24, 24, 28, 36, 48]
n_layers = [8, 16, 16, 16, 16]
elif arch == 68:
first_ch = [32, 64]
second_kernel = 3
ch_list = [128, 256, 320, 640]
grmul = 1.7
gr = [14, 16, 20, 40]
n_layers = [8, 16, 16, 16]
else:
raise ValueError("HarDNet-{} is not supported.".format(arch))
self.return_idx = return_idx
self._out_channels = [96, 214, 458, 784]
avg_pool = True
if depth_wise:
second_kernel = 1
avg_pool = False
blks = len(n_layers)
self.base = nn.LayerList([])
# First Layer: Standard Conv3x3, Stride=2
self.base.append(
ConvLayer(
in_channels=3,
out_channels=first_ch[0],
kernel_size=3,
stride=2,
bias_attr=False))
# Second Layer
self.base.append(
ConvLayer(
first_ch[0], first_ch[1], kernel_size=second_kernel))
# Avgpooling or DWConv3x3 downsampling
if avg_pool:
self.base.append(nn.AvgPool2D(kernel_size=3, stride=2, padding=1))
else:
self.base.append(DWConvLayer(first_ch[1], first_ch[1], stride=2))
# Build all HarDNet blocks
ch = first_ch[1]
for i in range(blks):
blk = HarDBlock(ch, gr[i], grmul, n_layers[i], dwconv=depth_wise)
ch = blk.out_channels
self.base.append(blk)
if i != blks - 1:
self.base.append(ConvLayer(ch, ch_list[i], kernel_size=1))
ch = ch_list[i]
if i == 0:
self.base.append(
nn.AvgPool2D(
kernel_size=2, stride=2, ceil_mode=True))
elif i != blks - 1 and i != 1 and i != 3:
self.base.append(nn.AvgPool2D(kernel_size=2, stride=2))
def forward(self, inputs):
x = inputs['image']
outs = []
for i, layer in enumerate(self.base):
x = layer(x)
if i in self.return_idx:
outs.append(x)
return outs
@property
def out_shape(self):
return [ShapeSpec(channels=self._out_channels[i]) for i in range(4)]