-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathmot_keypoint_unite_infer.py
301 lines (264 loc) · 11.2 KB
/
mot_keypoint_unite_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import cv2
import math
import numpy as np
import paddle
import yaml
import copy
from collections import defaultdict
from mot_keypoint_unite_utils import argsparser
from preprocess import decode_image
from infer import print_arguments, get_test_images, bench_log
from mot_sde_infer import SDE_Detector
from mot_jde_infer import JDE_Detector, MOT_JDE_SUPPORT_MODELS
from keypoint_infer import KeyPointDetector, KEYPOINT_SUPPORT_MODELS
from det_keypoint_unite_infer import predict_with_given_det
from visualize import visualize_pose
from benchmark_utils import PaddleInferBenchmark
from utils import get_current_memory_mb
from keypoint_postprocess import translate_to_ori_images
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from pptracking.python.mot.visualize import plot_tracking, plot_tracking_dict
from pptracking.python.mot.utils import MOTTimer as FPSTimer
def convert_mot_to_det(tlwhs, scores):
results = {}
num_mot = len(tlwhs)
xyxys = copy.deepcopy(tlwhs)
for xyxy in xyxys.copy():
xyxy[2:] = xyxy[2:] + xyxy[:2]
# support single class now
results['boxes'] = np.vstack(
[np.hstack([0, scores[i], xyxys[i]]) for i in range(num_mot)])
results['boxes_num'] = np.array([num_mot])
return results
def mot_topdown_unite_predict(mot_detector,
topdown_keypoint_detector,
image_list,
keypoint_batch_size=1,
save_res=False):
det_timer = mot_detector.get_timer()
store_res = []
image_list.sort()
num_classes = mot_detector.num_classes
for i, img_file in enumerate(image_list):
# Decode image in advance in mot + pose prediction
det_timer.preprocess_time_s.start()
image, _ = decode_image(img_file, {})
det_timer.preprocess_time_s.end()
if FLAGS.run_benchmark:
mot_results = mot_detector.predict_image(
[image], run_benchmark=True, repeats=10)
cm, gm, gu = get_current_memory_mb()
mot_detector.cpu_mem += cm
mot_detector.gpu_mem += gm
mot_detector.gpu_util += gu
else:
mot_results = mot_detector.predict_image([image], visual=False)
online_tlwhs, online_scores, online_ids = mot_results[
0] # only support bs=1 in MOT model
results = convert_mot_to_det(
online_tlwhs[0],
online_scores[0]) # only support single class for mot + pose
if results['boxes_num'] == 0:
continue
keypoint_res = predict_with_given_det(
image, results, topdown_keypoint_detector, keypoint_batch_size,
FLAGS.run_benchmark)
if save_res:
save_name = img_file if isinstance(img_file, str) else i
store_res.append([
save_name, keypoint_res['bbox'],
[keypoint_res['keypoint'][0], keypoint_res['keypoint'][1]]
])
if FLAGS.run_benchmark:
cm, gm, gu = get_current_memory_mb()
topdown_keypoint_detector.cpu_mem += cm
topdown_keypoint_detector.gpu_mem += gm
topdown_keypoint_detector.gpu_util += gu
else:
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
visualize_pose(
img_file,
keypoint_res,
visual_thresh=FLAGS.keypoint_threshold,
save_dir=FLAGS.output_dir)
if save_res:
"""
1) store_res: a list of image_data
2) image_data: [imageid, rects, [keypoints, scores]]
3) rects: list of rect [xmin, ymin, xmax, ymax]
4) keypoints: 17(joint numbers)*[x, y, conf], total 51 data in list
5) scores: mean of all joint conf
"""
with open("det_keypoint_unite_image_results.json", 'w') as wf:
json.dump(store_res, wf, indent=4)
def mot_topdown_unite_predict_video(mot_detector,
topdown_keypoint_detector,
camera_id,
keypoint_batch_size=1,
save_res=False):
video_name = 'output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.split(FLAGS.video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
timer_mot, timer_kp, timer_mot_kp = FPSTimer(), FPSTimer(), FPSTimer()
num_classes = mot_detector.num_classes
assert num_classes == 1, 'Only one category mot model supported for uniting keypoint deploy.'
data_type = 'mot'
while (1):
ret, frame = capture.read()
if not ret:
break
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
frame_id += 1
timer_mot_kp.tic()
# mot model
timer_mot.tic()
frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
mot_results = mot_detector.predict_image([frame2], visual=False)
timer_mot.toc()
online_tlwhs, online_scores, online_ids = mot_results[0]
results = convert_mot_to_det(
online_tlwhs[0],
online_scores[0]) # only support single class for mot + pose
if results['boxes_num'] == 0:
continue
# keypoint model
timer_kp.tic()
keypoint_res = predict_with_given_det(
frame2, results, topdown_keypoint_detector, keypoint_batch_size,
FLAGS.run_benchmark)
timer_kp.toc()
timer_mot_kp.toc()
kp_fps = 1. / timer_kp.duration
mot_kp_fps = 1. / timer_mot_kp.duration
im = visualize_pose(
frame,
keypoint_res,
visual_thresh=FLAGS.keypoint_threshold,
returnimg=True,
ids=online_ids[0])
im = plot_tracking_dict(
im,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=mot_kp_fps)
writer.write(im)
if camera_id != -1:
cv2.imshow('Tracking and keypoint results', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
writer.release()
print('output_video saved to: {}'.format(out_path))
def main():
deploy_file = os.path.join(FLAGS.mot_model_dir, 'infer_cfg.yml')
with open(deploy_file) as f:
yml_conf = yaml.safe_load(f)
arch = yml_conf['arch']
mot_detector_func = 'SDE_Detector'
if arch in MOT_JDE_SUPPORT_MODELS:
mot_detector_func = 'JDE_Detector'
mot_detector = eval(mot_detector_func)(FLAGS.mot_model_dir,
FLAGS.tracker_config,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=1,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
threshold=FLAGS.mot_threshold,
output_dir=FLAGS.output_dir)
topdown_keypoint_detector = KeyPointDetector(
FLAGS.keypoint_model_dir,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=FLAGS.keypoint_batch_size,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
threshold=FLAGS.keypoint_threshold,
output_dir=FLAGS.output_dir,
use_dark=FLAGS.use_dark)
keypoint_arch = topdown_keypoint_detector.pred_config.arch
assert KEYPOINT_SUPPORT_MODELS[
keypoint_arch] == 'keypoint_topdown', 'MOT-Keypoint unite inference only supports topdown models.'
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
mot_topdown_unite_predict_video(
mot_detector, topdown_keypoint_detector, FLAGS.camera_id,
FLAGS.keypoint_batch_size, FLAGS.save_res)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
mot_topdown_unite_predict(mot_detector, topdown_keypoint_detector,
img_list, FLAGS.keypoint_batch_size,
FLAGS.save_res)
if not FLAGS.run_benchmark:
mot_detector.det_times.info(average=True)
topdown_keypoint_detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
mot_model_dir = FLAGS.mot_model_dir
mot_model_info = {
'model_name': mot_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(mot_detector, img_list, mot_model_info, name='MOT')
keypoint_model_dir = FLAGS.keypoint_model_dir
keypoint_model_info = {
'model_name': keypoint_model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(topdown_keypoint_detector, img_list, keypoint_model_info,
FLAGS.keypoint_batch_size, 'KeyPoint')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
], "device should be CPU, GPU, NPU or XPU"
main()