-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathmot_jde_infer.py
509 lines (459 loc) · 20.5 KB
/
mot_jde_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle
from benchmark_utils import PaddleInferBenchmark
from preprocess import decode_image
from mot_utils import argsparser, Timer, get_current_memory_mb
from det_infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from mot import JDETracker
from mot.utils import MOTTimer, write_mot_results, flow_statistic
from mot.visualize import plot_tracking, plot_tracking_dict
# Global dictionary
MOT_JDE_SUPPORT_MODELS = {
'JDE',
'FairMOT',
}
class JDE_Detector(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU/NPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
output_dir (string): The path of output, default as 'output'
threshold (float): Score threshold of the detected bbox, default as 0.5
save_images (bool): Whether to save visualization image results, default as False
save_mot_txts (bool): Whether to save tracking results (txt), default as False
draw_center_traj (bool): Whether drawing the trajectory of center, default as False
secs_interval (int): The seconds interval to count after tracking, default as 10
skip_frame_num (int): Skip frame num to get faster MOT results, default as -1
do_entrance_counting(bool): Whether counting the numbers of identifiers entering
or getting out from the entrance, default as False,only support single class
counting in MOT.
do_break_in_counting(bool): Whether counting the numbers of identifiers break in
the area, default as False,only support single class counting in MOT,
and the video should be taken by a static camera.
region_type (str): Area type for entrance counting or break in counting, 'horizontal'
and 'vertical' used when do entrance counting. 'custom' used when do break in counting.
Note that only support single-class MOT, and the video should be taken by a static camera.
region_polygon (list): Clockwise point coords (x0,y0,x1,y1...) of polygon of area when
do_break_in_counting. Note that only support single-class MOT and
the video should be taken by a static camera.
"""
def __init__(self,
model_dir,
tracker_config=None,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1088,
trt_opt_shape=608,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
save_images=False,
save_mot_txts=False,
draw_center_traj=False,
secs_interval=10,
skip_frame_num=-1,
do_entrance_counting=False,
do_break_in_counting=False,
region_type='horizontal',
region_polygon=[]):
super(JDE_Detector, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold, )
self.save_images = save_images
self.save_mot_txts = save_mot_txts
self.draw_center_traj = draw_center_traj
self.secs_interval = secs_interval
self.skip_frame_num = skip_frame_num
self.do_entrance_counting = do_entrance_counting
self.do_break_in_counting = do_break_in_counting
self.region_type = region_type
self.region_polygon = region_polygon
if self.region_type == 'custom':
assert len(
self.region_polygon
) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels)
if self.skip_frame_num > 1:
self.previous_det_result = None
# tracker config
assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
cfg = self.pred_config.tracker
min_box_area = cfg.get('min_box_area', 0.0)
vertical_ratio = cfg.get('vertical_ratio', 0.0)
conf_thres = cfg.get('conf_thres', 0.0)
tracked_thresh = cfg.get('tracked_thresh', 0.7)
metric_type = cfg.get('metric_type', 'euclidean')
self.tracker = JDETracker(
num_classes=self.num_classes,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio,
conf_thres=conf_thres,
tracked_thresh=tracked_thresh,
metric_type=metric_type)
def postprocess(self, inputs, result):
# postprocess output of predictor
np_boxes = result['pred_dets']
if np_boxes.shape[0] <= 0:
print('[WARNNING] No object detected.')
result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
result = {k: v for k, v in result.items() if v is not None}
return result
def tracking(self, det_results):
pred_dets = det_results['pred_dets'] # cls_id, score, x0, y0, x1, y1
pred_embs = det_results['pred_embs']
online_targets_dict = self.tracker.update(pred_dets, pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
return online_tlwhs, online_scores, online_ids
def predict(self, repeats=1):
'''
Args:
repeats (int): repeats number for prediction
Returns:
result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
shape: [N, 128]
'''
# model prediction
np_pred_dets, np_pred_embs = None, None
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_pred_dets = boxes_tensor.copy_to_cpu()
embs_tensor = self.predictor.get_output_handle(output_names[1])
np_pred_embs = embs_tensor.copy_to_cpu()
result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
return result
def predict_image(self,
image_list,
run_benchmark=False,
repeats=1,
visual=True,
seq_name=None,
reuse_det_result=False):
mot_results = []
num_classes = self.num_classes
image_list.sort()
ids2names = self.pred_config.labels
data_type = 'mcmot' if num_classes > 1 else 'mot'
for frame_id, img_file in enumerate(image_list):
batch_image_list = [img_file] # bs=1 in MOT model
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result_warmup = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking
result_warmup = self.tracking(det_result)
self.det_times.tracking_time_s.start()
online_tlwhs, online_scores, online_ids = self.tracking(
det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
self.det_times.preprocess_time_s.start()
if not reuse_det_result:
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start()
if not reuse_det_result:
result = self.predict()
self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start()
if not reuse_det_result:
det_result = self.postprocess(inputs, result)
self.previous_det_result = det_result
else:
assert self.previous_det_result is not None
det_result = self.previous_det_result
self.det_times.postprocess_time_s.end()
# tracking process
self.det_times.tracking_time_s.start()
online_tlwhs, online_scores, online_ids = self.tracking(
det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
if visual:
if len(image_list) > 1 and frame_id % 10 == 0:
print('Tracking frame {}'.format(frame_id))
frame, _ = decode_image(img_file, {})
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
if seq_name is None:
seq_name = image_list[0].split('/')[-2]
save_dir = os.path.join(self.output_dir, seq_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
mot_results.append([online_tlwhs, online_scores, online_ids])
return mot_results
def predict_video(self, video_file, camera_id):
video_out_name = 'mot_output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(video_file)
video_out_name = os.path.split(video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
video_format = 'mp4v'
fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 0
timer = MOTTimer()
results = defaultdict(list) # support single class and multi classes
num_classes = self.num_classes
data_type = 'mcmot' if num_classes > 1 else 'mot'
ids2names = self.pred_config.labels
center_traj = None
entrance = None
records = None
if self.draw_center_traj:
center_traj = [{} for i in range(num_classes)]
if num_classes == 1:
id_set = set()
interval_id_set = set()
in_id_list = list()
out_id_list = list()
prev_center = dict()
records = list()
if self.do_entrance_counting or self.do_break_in_counting:
if self.region_type == 'horizontal':
entrance = [0, height / 2., width, height / 2.]
elif self.region_type == 'vertical':
entrance = [width / 2, 0., width / 2, height]
elif self.region_type == 'custom':
entrance = []
assert len(
self.region_polygon
) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
for i in range(0, len(self.region_polygon), 2):
entrance.append([
self.region_polygon[i], self.region_polygon[i + 1]
])
entrance.append([width, height])
else:
raise ValueError("region_type:{} is not supported.".format(
self.region_type))
video_fps = fps
while (1):
ret, frame = capture.read()
if not ret:
break
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
timer.tic()
mot_skip_frame_num = self.skip_frame_num
reuse_det_result = False
if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
reuse_det_result = True
seq_name = video_out_name.split('.')[0]
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
mot_results = self.predict_image(
[frame_rgb],
visual=False,
seq_name=seq_name,
reuse_det_result=reuse_det_result)
timer.toc()
online_tlwhs, online_scores, online_ids = mot_results[0]
for cls_id in range(num_classes):
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
online_ids[cls_id]))
# NOTE: just implement flow statistic for single class
if num_classes == 1:
result = (frame_id + 1, online_tlwhs[0], online_scores[0],
online_ids[0])
statistic = flow_statistic(
result,
self.secs_interval,
self.do_entrance_counting,
self.do_break_in_counting,
self.region_type,
video_fps,
entrance,
id_set,
interval_id_set,
in_id_list,
out_id_list,
prev_center,
records,
data_type,
ids2names=self.pred_config.labels)
records = statistic['records']
fps = 1. / timer.duration
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names,
do_entrance_counting=self.do_entrance_counting,
entrance=entrance,
records=records,
center_traj=center_traj)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
frame_id += 1
if self.save_mot_txts:
result_filename = os.path.join(
self.output_dir, video_out_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, results, data_type, num_classes)
if num_classes == 1:
result_filename = os.path.join(
self.output_dir,
video_out_name.split('.')[-2] + '_flow_statistic.txt')
f = open(result_filename, 'w')
for line in records:
f.write(line)
print('Flow statistic save in {}'.format(result_filename))
f.close()
writer.release()
def main():
detector = JDE_Detector(
FLAGS.model_dir,
tracker_config=None,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=1,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
output_dir=FLAGS.output_dir,
threshold=FLAGS.threshold,
save_images=FLAGS.save_images,
save_mot_txts=FLAGS.save_mot_txts,
draw_center_traj=FLAGS.draw_center_traj,
secs_interval=FLAGS.secs_interval,
skip_frame_num=FLAGS.skip_frame_num,
do_entrance_counting=FLAGS.do_entrance_counting,
do_break_in_counting=FLAGS.do_break_in_counting,
region_type=FLAGS.region_type,
region_polygon=FLAGS.region_polygon)
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
model_dir = FLAGS.model_dir
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, model_info, name='MOT')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU', 'NPU'
], "device should be CPU, GPU, NPU or XPU"
main()