-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathsolov2_r101_vd_fpn_3x_coco.yml
66 lines (60 loc) · 1.58 KB
/
solov2_r101_vd_fpn_3x_coco.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
_BASE_: [
'../datasets/coco_instance.yml',
'../runtime.yml',
'_base_/solov2_r50_fpn.yml',
'_base_/optimizer_1x.yml',
'_base_/solov2_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_vd_pretrained.pdparams
weights: output/solov2_r101_vd_fpn_3x_coco/model_final
epoch: 36
use_ema: true
ema_decay: 0.9998
ResNet:
depth: 101
variant: d
freeze_at: 0
return_idx: [0,1,2,3]
dcn_v2_stages: [1,2,3]
num_stages: 4
SOLOv2Head:
seg_feat_channels: 512
stacked_convs: 4
num_grids: [40, 36, 24, 16, 12]
kernel_out_channels: 256
solov2_loss: SOLOv2Loss
mask_nms: MaskMatrixNMS
dcn_v2_stages: [0, 1, 2, 3]
SOLOv2MaskHead:
mid_channels: 128
out_channels: 256
start_level: 0
end_level: 3
use_dcn_in_tower: True
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [24, 33]
- !LinearWarmup
start_factor: 0.
steps: 2000
TrainReader:
sample_transforms:
- Decode: {}
- Poly2Mask: {}
- RandomResize: {interp: 1,
target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]],
keep_ratio: True}
- RandomFlip: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
- Gt2Solov2Target: {num_grids: [40, 36, 24, 16, 12],
scale_ranges: [[1, 96], [48, 192], [96, 384], [192, 768], [384, 2048]],
coord_sigma: 0.2}
batch_size: 2
shuffle: true
drop_last: true