-
Notifications
You must be signed in to change notification settings - Fork 2.9k
/
Copy pathgfl_slim_ld_r18vd_1x_coco.yml
73 lines (67 loc) · 1.38 KB
/
gfl_slim_ld_r18vd_1x_coco.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'_base_/optimizer_1x.yml',
'_base_/gfl_reader.yml',
]
weights: output/gfl_r18vd_1x_coco/model_final
find_unused_parameters: True
architecture: GFL
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet18_vd_pretrained.pdparams
GFL:
backbone: ResNet
neck: FPN
head: LDGFLHead
ResNet:
depth: 18
variant: d
norm_type: bn
freeze_at: 0
return_idx: [1,2,3]
num_stages: 4
FPN:
out_channel: 256
spatial_scales: [0.125, 0.0625, 0.03125]
extra_stage: 2
has_extra_convs: true
use_c5: false
LDGFLHead: # new head
conv_feat:
name: FCOSFeat
feat_in: 256
feat_out: 256
num_convs: 4
norm_type: "gn"
use_dcn: false
fpn_stride: [8, 16, 32, 64, 128]
prior_prob: 0.01
reg_max: 16
loss_class:
name: QualityFocalLoss
use_sigmoid: True
beta: 2.0
loss_weight: 1.0
loss_dfl:
name: DistributionFocalLoss
loss_weight: 0.25
loss_bbox:
name: GIoULoss
loss_weight: 2.0
loss_ld:
name: KnowledgeDistillationKLDivLoss
loss_weight: 0.25
T: 10
loss_ld_vlr:
name: KnowledgeDistillationKLDivLoss
loss_weight: 0.25
T: 10
loss_kd:
name: KnowledgeDistillationKLDivLoss
loss_weight: 10
T: 2
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.025
nms_threshold: 0.6