face_detection
High efficiency, high speed face detection solutions, including the most advanced models and classic models.
Network structure | size | images/GPUs | Learning rate strategy | Easy/Medium/Hard Set | Prediction delay(SD855) | Model size(MB) | Download | Configuration File |
---|---|---|---|---|---|---|---|---|
BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 | link | Configuration File |
BlazeFace-FPN-SSH | 640 | 8 | 1000e | 0.907 / 0.883 / 0.793 | - | 0.479 | link | Configuration File |
Attention:
- We use a multi-scale evaluation strategy to get the mAP in
Easy/Medium/Hard Set
. Please refer to the evaluation on the WIDER FACE dataset for details.
We use WIDER-FACE dataset for training and model tests, the official web site provides detailed data is introduced.
-
WIDER-Face data source:
-
Load a dataset of type
wider_face
using the following directory structure:dataset/wider_face/ ├── wider_face_split │ ├── wider_face_train_bbx_gt.txt │ ├── wider_face_val_bbx_gt.txt ├── WIDER_train │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_100.jpg │ │ │ ├── 0_Parade_marchingband_1_381.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ... ├── WIDER_val │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_1004.jpg │ │ │ ├── 0_Parade_marchingband_1_1045.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ...
-
Manually download the dataset: To download the WIDER-FACE dataset, run the following command:
cd dataset/wider_face && ./download_wider_face.sh
The configuration of the base model can be referenced to configs/face_detection/_base_/blazeface.yml
;
Improved model to add FPN and SSH neck structure, configuration files can be referenced to configs/face_detection/_base_/blazeface_fpn.yml
, You can configure FPN and SSH as required
BlazeNet:
blaze_filters: [[24, 24], [24, 24], [24, 48, 2], [48, 48], [48, 48]]
double_blaze_filters: [[48, 24, 96, 2], [96, 24, 96], [96, 24, 96],
[96, 24, 96, 2], [96, 24, 96], [96, 24, 96]]
act: hard_swish #Configure Blaze Block activation function in Backbone. The basic model is Relu. hard_swish is needed to add FPN and SSH
BlazeNeck:
neck_type : fpn_ssh #only_fpn, only_ssh and fpn_ssh
in_channel: [96,96]
The training process and evaluation process methods are consistent with other algorithms, please refer to GETTING_STARTED_cn.md。
Attention: Face detection models currently do not support training and evaluation.
- Step 1: Evaluate and generate a result file:
python -u tools/eval.py -c configs/face_detection/blazeface_1000e.yml \
-o weights=output/blazeface_1000e/model_final \
multi_scale=True
Set multi_scale=True
for multi-scale evaluation. After evaluation, test results in TXT format will be generated in output/pred
.
- Step 2: Download the official evaluation script and Ground Truth file:
wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/eval_script/eval_tools.zip
unzip eval_tools.zip && rm -f eval_tools.zip
- Step 3: Start the evaluation
Method 1: Python evaluation:
git clone /~https://github.com/wondervictor/WiderFace-Evaluation.git
cd WiderFace-Evaluation
# compile
python3 setup.py build_ext --inplace
# Begin to assess
python3 evaluation.py -p /path/to/PaddleDetection/output/pred -g /path/to/eval_tools/ground_truth
Method 2: MatLab evaluation:
# Change the name of save result path and draw curve in `eval_tools/wider_eval.m`:
pred_dir = './pred';
legend_name = 'Paddle-BlazeFace';
`wider_eval.m` is the main implementation of the evaluation module. Run the following command:
matlab -nodesktop -nosplash -nojvm -r "run wider_eval.m;quit;"
In order to support development, here is an example of using the Paddle Detection whl package to make predictions through Python code.
import cv2
import paddle
import numpy as np
from ppdet.core.workspace import load_config
from ppdet.engine import Trainer
from ppdet.metrics import get_infer_results
from ppdet.data.transform.operators import NormalizeImage, Permute
if __name__ == '__main__':
# prepare for the parameters
config_path = 'PaddleDetection/configs/face_detection/blazeface_1000e.yml'
cfg = load_config(config_path)
weight_path = 'PaddleDetection/output/blazeface_1000e.pdparams'
infer_img_path = 'PaddleDetection/demo/hrnet_demo.jpg'
cfg.weights = weight_path
bbox_thre = 0.8
paddle.set_device('gpu')
# create the class object
trainer = Trainer(cfg, mode='test')
trainer.load_weights(cfg.weights)
trainer.model.eval()
normaler = NormalizeImage(mean=[123, 117, 104], std=[127.502231, 127.502231, 127.502231], is_scale=False)
permuter = Permute()
# read the image file
im = cv2.imread(infer_img_path)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
# prepare for the data dict
data_dict = {'image': im}
data_dict = normaler(data_dict)
data_dict = permuter(data_dict)
h, w, c = im.shape
data_dict['im_id'] = paddle.Tensor(np.array([[0]]))
data_dict['im_shape'] = paddle.Tensor(np.array([[h, w]], dtype=np.float32))
data_dict['scale_factor'] = paddle.Tensor(np.array([[1., 1.]], dtype=np.float32))
data_dict['image'] = paddle.Tensor(data_dict['image'].reshape((1, c, h, w)))
data_dict['curr_iter'] = paddle.Tensor(np.array([0]))
# do the prediction
outs = trainer.model(data_dict)
# to do the postprocess to get the final bbox info
for key in ['im_shape', 'scale_factor', 'im_id']:
outs[key] = data_dict[key]
for key, value in outs.items():
outs[key] = value.numpy()
clsid2catid, catid2name = {0: 'face'}, {0: 0}
batch_res = get_infer_results(outs, clsid2catid)
bbox = [sub_dict for sub_dict in batch_res['bbox'] if sub_dict['score'] > bbox_thre]
print(bbox)
@article{bazarevsky2019blazeface,
title={BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs},
author={Valentin Bazarevsky and Yury Kartynnik and Andrey Vakunov and Karthik Raveendran and Matthias Grundmann},
year={2019},
eprint={1907.05047},
archivePrefix={arXiv},