From 2c726f4b6b1103b10a8dd82ce4d7b617bc13db7a Mon Sep 17 00:00:00 2001 From: Kavya Srinet Date: Mon, 20 Nov 2017 16:56:30 -0800 Subject: [PATCH 1/2] Adding the FTRL optimizer --- paddle/operators/ftrl_op.cc | 139 +++++++++++++++++++ paddle/operators/ftrl_op.cu | 19 +++ paddle/operators/ftrl_op.h | 96 +++++++++++++ python/paddle/v2/fluid/tests/test_ftrl_op.py | 58 ++++++++ 4 files changed, 312 insertions(+) create mode 100644 paddle/operators/ftrl_op.cc create mode 100644 paddle/operators/ftrl_op.cu create mode 100644 paddle/operators/ftrl_op.h create mode 100644 python/paddle/v2/fluid/tests/test_ftrl_op.py diff --git a/paddle/operators/ftrl_op.cc b/paddle/operators/ftrl_op.cc new file mode 100644 index 00000000000000..cb7ae6919623f1 --- /dev/null +++ b/paddle/operators/ftrl_op.cc @@ -0,0 +1,139 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/ftrl_op.h" + +namespace paddle { +namespace operators { + +class FTRLOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Param"), + "Input(Param) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasInput("SquaredAccumulator"), + "Input(SquaredAccumulator) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LinearAccumulator"), + "Input(LinearAccumulator) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Grad"), + "Input(Grad) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasInput("LearningRate"), + "Input(LearningRate) of FTRL should not be null."); + + PADDLE_ENFORCE(ctx->HasOutput("ParamOut"), + "Output(ParamOut) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("SquaredAccumOut"), + "Output(SquaredAccumOut) of FTRL should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("LinearAccumOut"), + "Output(LinearAccumOut) of FTRL should not be null."); + + auto param_dim = ctx->GetInputDim("Param"); + PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Grad"), + "Two input of FTRL Op's dimension must be same."); + + auto lr_dim = ctx->GetInputDim("LearningRate"); + PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1, + "Learning Rate should be a scalar."); + + ctx->SetOutputDim("ParamOut", param_dim); + ctx->SetOutputDim("SquaredAccumOut", param_dim); + ctx->SetOutputDim("LinearAccumOut", param_dim); + } +}; + +class FTRLOpMaker : public framework::OpProtoAndCheckerMaker { + public: + FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Param", + "(Tensor, default Tensor) " + "Input parameter value that has to be updated."); + AddInput("SquaredAccumulator", + "(Tensor, default Tensor) " + "Accumulator that accumulates squared gradients."); + AddInput("LinearAccumulator", + "(Tensor, default Tensor) " + "Accumulator that accumulates linear gradients."); + AddInput("Grad", + "(Tensor, default Tensor) " + "Input gradient of the parameter."); + AddInput("LearningRate", + "(Tensor, default Tensor) " + "The learning rate should be a tensor of size 1."); + + AddOutput("ParamOut", "(Tensor) Output updated parameter value."); + AddOutput("SquaredAccumOut", + "(Tensor) Output accumulated squared" + " gradients."); + AddOutput("LinearAccumOut", + "(Tensor) Output accumulated linear" + " gradients."); + + AddAttr("l1", + "(float, default 0.0) " + "L1 regularization strength.") + .SetDefault(0.0f); + AddAttr("l2", + "(float, default 0.0) " + "L2 regularization strength.") + .SetDefault(0.0f); + AddAttr("lr_power", + "(float, default -0.5f) " + "Learning Rate Power.") + .SetDefault(-0.5f); + AddComment(R"DOC( +FTRL (Follow The Regularized Leader) Operator. + +Optimizer that implements the FTRL algorithm: + +$$ +new\_accum = squared\_accum + grad^2 \\ +if (lr\_power == -0.5) { + linear\_accum += grad - (\surd(new\_accum) - \surd(squared\_accum)) / + (learning\_rate * param) \\ +} else { + linear\_accum += grad - + (new\_accum^{-lr\_power} - accum^{-lr\_power}) / + (learning\_rate * param) \\ +} + +x = (l1 * sign(linear\_accum) - linear\_accum) +if (lr\_power == -0.5) { + y = \frac{\surd(new\_accum)}{learning\_rate} + (2 * l2) \\ + pre\_shrink = \frac{x}{y} \\ + param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\ +} else { + y = \frac{new\_accum^{-lr\_power}}{learning\_rate} + (2 * l2) \\ + pre\_shrink = \frac{x}{y} \\ + param = (abs(linear\_accum) > l1).select(pre\_shrink, 0.0) \\ +} +squared\_accum += grad^2; +$$ + +The paper that proposed Follow The Regularized Leader (FTRL): +(https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf) + +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker); +REGISTER_OP_CPU_KERNEL(ftrl, + ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.cu b/paddle/operators/ftrl_op.cu new file mode 100644 index 00000000000000..97b36dade6f531 --- /dev/null +++ b/paddle/operators/ftrl_op.cu @@ -0,0 +1,19 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +You may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software distributed +under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +CONDITIONS OF ANY KIND, either express or implied. See the License for the +specific language governing permissions and limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/ftrl_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(ftrl, + ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.h b/paddle/operators/ftrl_op.h new file mode 100644 index 00000000000000..b040162f8d1d89 --- /dev/null +++ b/paddle/operators/ftrl_op.h @@ -0,0 +1,96 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; +template +using EigenVector = framework::EigenVector; + +template +class FTRLOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto* param_out = ctx.Output("ParamOut"); + auto* sq_accum_out = ctx.Output("SquaredAccumOut"); + auto* lin_accum_out = ctx.Output("LinearAccumOut"); + + param_out->mutable_data(ctx.GetPlace()); + sq_accum_out->mutable_data(ctx.GetPlace()); + lin_accum_out->mutable_data(ctx.GetPlace()); + + auto grad = ctx.Input("Grad"); + + auto l1 = static_cast(ctx.Attr("l1")); + auto l2 = static_cast(ctx.Attr("l2")); + auto lr_power = static_cast(ctx.Attr("lr_power")); + + auto p = EigenVector::Flatten(*ctx.Input("Param")); + auto sq_accum = + EigenVector::Flatten(*ctx.Input("SquaredAccumulator")); + auto lin_accum = + EigenVector::Flatten(*ctx.Input("LinearAccumulator")); + auto g = EigenVector::Flatten(*grad); + auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); + + auto p_out = EigenVector::Flatten(*param_out); + auto s_acc_out = EigenVector::Flatten(*sq_accum_out); + auto l_acc_out = EigenVector::Flatten(*lin_accum_out); + auto place = ctx.GetEigenDevice(); + + Eigen::DSizes grad_dsize(grad->numel()); + + auto new_accum = sq_accum + g * g; + // Special case for lr_power = -0.5 + if (lr_power == static_cast(-0.5)) { + l_acc_out.device(place) = + lin_accum + g - + ((new_accum.sqrt() - sq_accum.sqrt()) / lr.broadcast(grad_dsize)) * p; + } else { + l_acc_out.device(place) = + lin_accum + g - + ((new_accum.pow(-lr_power) - sq_accum.pow(-lr_power)) / + lr.broadcast(grad_dsize)) * + p; + } + + auto x = (l_acc_out.constant(l1) * l_acc_out.sign() - l_acc_out); + if (lr_power == static_cast(-0.5)) { + auto y = (new_accum.sqrt() / lr.broadcast(grad_dsize)) + + l_acc_out.constant(static_cast(2) * l2); + auto pre_shrink = x / y; + p_out.device(place) = + (l_acc_out.abs() > l_acc_out.constant(l1)) + .select(pre_shrink, p.constant(static_cast(0))); + } else { + auto y = (new_accum.pow(-lr_power) / lr.broadcast(grad_dsize)) + + l_acc_out.constant(static_cast(2) * l2); + auto pre_shrink = x / y; + p_out.device(place) = + (l_acc_out.abs() > l_acc_out.constant(l1)) + .select(pre_shrink, p.constant(static_cast(0))); + } + + s_acc_out.device(place) = sq_accum + g * g; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/python/paddle/v2/fluid/tests/test_ftrl_op.py b/python/paddle/v2/fluid/tests/test_ftrl_op.py new file mode 100644 index 00000000000000..ba30d36ae6583f --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_ftrl_op.py @@ -0,0 +1,58 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestFTRLOp(OpTest): + def setUp(self): + self.op_type = "ftrl" + w = np.random.random((102, 105)).astype("float32") + g = np.random.random((102, 105)).astype("float32") + sq_accum = np.full((102, 105), 0.1).astype("float32") + linear_accum = np.full((102, 105), 0.1).astype("float32") + lr = np.array([0.1]).astype("float32") + l1 = 0.1 + l2 = 0.2 + lr_power = -0.5 + + self.inputs = { + 'Param': w, + 'SquaredAccumulator': sq_accum, + 'LinearAccumulator': linear_accum, + 'Grad': g, + 'LearningRate': lr + } + self.attrs = {'l1': l1, 'l2': l2, 'lr_power': lr_power} + new_accum = sq_accum + g * g + if lr_power == -0.5: + linear_out = linear_accum + g + -((np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w + else: + linear_out = linear_accum + g + -((np.power(new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / + lr) * w + + x = (l1 * np.sign(linear_out) - linear_out) + if lr_power == -0.5: + y = (np.sqrt(new_accum) / lr) + (2 * l2) + pre_shrink = x / y + param_out = np.where(linear_out > l1, pre_shrink, 0) + else: + y = (np.power(new_accum, -lr_power) / lr) + (2 * l2) + pre_shrink = x / y + param_out = np.where(linear_out > l1, pre_shrink, 0.0) + + sq_accum_out = sq_accum + g * g + + self.outputs = { + 'ParamOut': param_out, + 'SquaredAccumOut': sq_accum_out, + 'LinearAccumOut': linear_out + } + + def test_check_output(self): + self.check_output() + + +if __name__ == "__main__": + unittest.main() From b184da7e76464a554b7f6616f2fd0421a884c775 Mon Sep 17 00:00:00 2001 From: Kavya Srinet Date: Tue, 21 Nov 2017 13:22:00 -0800 Subject: [PATCH 2/2] Fixed the python test case --- python/paddle/v2/fluid/tests/test_ftrl_op.py | 22 ++++++++++++-------- 1 file changed, 13 insertions(+), 9 deletions(-) diff --git a/python/paddle/v2/fluid/tests/test_ftrl_op.py b/python/paddle/v2/fluid/tests/test_ftrl_op.py index ba30d36ae6583f..f77ac4659a9b87 100644 --- a/python/paddle/v2/fluid/tests/test_ftrl_op.py +++ b/python/paddle/v2/fluid/tests/test_ftrl_op.py @@ -10,7 +10,7 @@ def setUp(self): g = np.random.random((102, 105)).astype("float32") sq_accum = np.full((102, 105), 0.1).astype("float32") linear_accum = np.full((102, 105), 0.1).astype("float32") - lr = np.array([0.1]).astype("float32") + lr = np.array([0.01]).astype("float32") l1 = 0.1 l2 = 0.2 lr_power = -0.5 @@ -22,25 +22,29 @@ def setUp(self): 'Grad': g, 'LearningRate': lr } - self.attrs = {'l1': l1, 'l2': l2, 'lr_power': lr_power} + self.attrs = { + 'l1': l1, + 'l2': l2, + 'lr_power': lr_power, + 'learning_rate': lr + } new_accum = sq_accum + g * g if lr_power == -0.5: - linear_out = linear_accum + g - -((np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w + linear_out = linear_accum + g - ( + (np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w else: - linear_out = linear_accum + g - -((np.power(new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / - lr) * w + linear_out = linear_accum + g - ((np.power( + new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / lr) * w x = (l1 * np.sign(linear_out) - linear_out) if lr_power == -0.5: y = (np.sqrt(new_accum) / lr) + (2 * l2) pre_shrink = x / y - param_out = np.where(linear_out > l1, pre_shrink, 0) + param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0) else: y = (np.power(new_accum, -lr_power) / lr) + (2 * l2) pre_shrink = x / y - param_out = np.where(linear_out > l1, pre_shrink, 0.0) + param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0) sq_accum_out = sq_accum + g * g