diff --git a/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py b/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py index e7108b3f4f3432..50bf8a2f9c7c58 100755 --- a/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py +++ b/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/hybrid_parallel_optimizer.py @@ -49,8 +49,6 @@ def __init__(self, clip, hcg): @imperative_base.no_grad def _dygraph_clip(self, params_grads): - params_and_grads = [] - sum_square_dist_fp16 = [] sum_square_dist_fp32 = [] sum_square_not_dist_fp16 = [] @@ -153,15 +151,14 @@ def _dygraph_clip(self, params_grads): if g is None: continue if getattr(p, 'need_clip', True) is False: - params_and_grads.append((p, g)) continue if p.dtype == paddle.float16: - new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16) + g.scale_(clip_var_fp16) else: - new_grad = layers.elementwise_mul(x=g, y=clip_var) - params_and_grads.append((p, new_grad)) + g.scale_(clip_var) + p._reset_grad_inplace_version(True) - return params_and_grads + return params_grads def __getattr__(self, item): return getattr(self._clip, item) @@ -201,6 +198,12 @@ def __init__(self, optimizer, hcg, strategy): else: self._inner_opt._grad_clip = HybridParallelClipGrad( self._inner_opt._grad_clip, hcg) + if self._inner_opt._parameter_list and isinstance( + self._inner_opt._parameter_list[0], dict): + for item in self._inner_opt._param_groups: + if "grad_clip" in item.keys(): + item["grad_clip"] = HybridParallelClipGrad( + self._inner_opt._grad_clip, hcg) @imperative_base.no_grad @framework.dygraph_only diff --git a/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py b/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py index a2797adff251ae..fc5b93c6e25499 100644 --- a/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py +++ b/python/paddle/distributed/fleet/meta_optimizers/dygraph_optimizer/sharding_optimizer_stage2.py @@ -109,6 +109,13 @@ def __init__(self, self._optim._grad_clip = ShardingClipGrad(self._optim._grad_clip, paddle.get_device(), self.group) + if self._optim._parameter_list and isinstance( + self._optim._parameter_list[0], dict): + for item in self._optim._param_groups: + if "grad_clip" in item.keys(): + item["grad_clip"] = ShardingClipGrad( + self._optim._grad_clip, + paddle.get_device(), self.group) if offload: assert self._pfp16, "Only support offload strategy while using \'Adam\', \'AdamW\' and \'Momentum\' optimizer with AMP/Pure FP16" diff --git a/python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py b/python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py index 5f696195c1abcd..9c30ff5a45075a 100644 --- a/python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py +++ b/python/paddle/distributed/fleet/meta_parallel/sharding/sharding_utils.py @@ -57,8 +57,6 @@ def __init__(self, clip, device, group): @imperative_base.no_grad def _dygraph_clip(self, params_grads): - params_and_grads = [] - sum_square_fp16 = [] sum_square_fp32 = [] @@ -114,15 +112,14 @@ def _dygraph_clip(self, params_grads): if g is None: continue if getattr(p, 'need_clip', True) is False: - params_and_grads.append((p, g)) continue if p.dtype == paddle.float16: - new_grad = layers.elementwise_mul(x=g, y=clip_var_fp16) + g.scale_(clip_var_fp16) else: - new_grad = layers.elementwise_mul(x=g, y=clip_var) - params_and_grads.append((p, new_grad)) + g.scale_(clip_var) + p._reset_grad_inplace_version(True) - return params_and_grads + return params_grads def __getattr__(self, item): return getattr(self._clip, item) diff --git a/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py b/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py index 9206d744990008..80acf7217e76fb 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py +++ b/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2.py @@ -159,10 +159,13 @@ def test_dp_stage2(): mlp2 = MLP() mlp3 = MLP() mlp4 = MLP() + mlp5 = MLP() mlp1.set_state_dict(state_dict) mlp2.set_state_dict(state_dict) mlp3.set_state_dict(state_dict) mlp4.set_state_dict(state_dict) + mlp5.set_state_dict(state_dict) + dp_params = train_mlp( mlp1, sharding_stage="dp", use_pure_fp16=False, opt_group=False) stage2_params = train_mlp( @@ -181,6 +184,11 @@ def test_dp_stage2(): rtol=1e-5, atol=1e-5) + stage2_params = train_mlp( + mlp2, sharding_stage=2, use_pure_fp16=False, opt_group=True) + for i in range(len(dp_params)): + np.testing.assert_allclose( + dp_params[i].numpy(), stage2_params[i].numpy(), rtol=1e-6) return diff --git a/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py b/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py index f7e426377382bb..84ffe9094d8126 100644 --- a/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py +++ b/python/paddle/fluid/tests/unittests/dygraph_sharding_stage2_offload.py @@ -49,7 +49,7 @@ def train_mlp(model, offload=False): optimizer = ShardingOptimizerStage2( params=model.parameters(), optim=optimizer, offload=offload) model = ShardingStage2( - model, optimizer, buffer_max_size=2**21, accumulate_grads=True) + model, optimizer, buffer_max_size=2**21, accumulate_grads=False) train_reader = paddle.batch( reader_decorator(linear_size), batch_size=batch_size, drop_last=True) @@ -98,12 +98,11 @@ def test_sharding_stage2_offload(): mlp_offload_params = train_mlp(mlp_offload, offload=True) for i in range(len(mlp_params)): - for j in range(len(mlp_offload_params)): - if mlp_params[i].name == mlp_offload_params[j].name: - np.testing.assert_allclose( - mlp_params[i].numpy(), - mlp_offload_params[j].numpy(), - rtol=1e-6) + np.testing.assert_allclose( + mlp_params[i].numpy(), + mlp_offload_params[i].numpy(), + rtol=5e-3, + atol=5e-3) return diff --git a/python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py b/python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py index de980f3c3f787e..430c6e0884822d 100644 --- a/python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py +++ b/python/paddle/fluid/tests/unittests/hybrid_parallel_pp_clip_grad.py @@ -31,5 +31,19 @@ def build_optimizer(self, model): return scheduler, optimizer +class TestPPClipGradParamGroup(TestDistPPTraning): + def build_optimizer(self, model): + grad_clip = paddle.nn.ClipGradByGlobalNorm(0.5) + scheduler = paddle.optimizer.lr.PiecewiseDecay( + boundaries=[2], values=[0.001, 0.002], verbose=True) + optimizer = paddle.optimizer.Momentum( + learning_rate=scheduler, + grad_clip=grad_clip, + parameters=[{ + "params": model.parameters() + }]) + return scheduler, optimizer + + if __name__ == "__main__": unittest.main()