diff --git a/paconvert/api_mapping.json b/paconvert/api_mapping.json index 255f71e00..f5a94bae7 100644 --- a/paconvert/api_mapping.json +++ b/paconvert/api_mapping.json @@ -8386,6 +8386,19 @@ "input": "x" } }, + "torch.nn.functional.dropout1d": { + "Matcher": "GenericMatcher", + "paddle_api": "paddle.nn.functional.dropout", + "args_list": [ + "input", + "p", + "training", + "inplace" + ], + "kwargs_change": { + "input": "x" + } + }, "torch.nn.functional.dropout2d": { "Matcher": "GenericMatcher", "paddle_api": "paddle.nn.functional.dropout2d", diff --git a/tests/test_nn_functional_dropout1d.py b/tests/test_nn_functional_dropout1d.py new file mode 100644 index 000000000..5c910c5ab --- /dev/null +++ b/tests/test_nn_functional_dropout1d.py @@ -0,0 +1,84 @@ +# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import textwrap + +from apibase import APIBase + +obj = APIBase("torch.nn.functional.dropout1d") + + +def test_case_1(): + pytorch_code = textwrap.dedent( + """ + import torch + import torch.nn.functional as F + x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913], + [-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]]) + result = F.dropout1d(x) + """ + ) + obj.run(pytorch_code, ["result"], check_value=False) + + +def test_case_2(): + pytorch_code = textwrap.dedent( + """ + import torch + import torch.nn.functional as F + x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913], + [-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]]) + result = F.dropout1d(x, 0.5) + """ + ) + obj.run(pytorch_code, ["result"], check_value=False) + + +def test_case_3(): + pytorch_code = textwrap.dedent( + """ + import torch + import torch.nn.functional as F + x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913], + [-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]]) + result = F.dropout1d(x, p=0.5) + """ + ) + obj.run(pytorch_code, ["result"], check_value=False) + + +def test_case_4(): + pytorch_code = textwrap.dedent( + """ + import torch + import torch.nn.functional as F + x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913], + [-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]]) + result = F.dropout1d(x, 0.5, training=True, inplace=False) + """ + ) + obj.run(pytorch_code, ["result"], check_value=False) + + +def test_case_5(): + pytorch_code = textwrap.dedent( + """ + import torch + import torch.nn.functional as F + x = torch.tensor([[[-1.3020, -0.1005, 0.5766, 0.6351, -0.8893, 0.0253, -0.1756, 1.2913], + [-0.8833, -0.1369, -0.0168, -0.5409, -0.1511, -0.1240, -1.1870, -1.8816]]]) + result = F.dropout1d(input=x, p=0.5, inplace=True, training=True) + """ + ) + obj.run(pytorch_code, ["result"], check_value=False)