diff --git a/src/projections/tpeqd.cpp b/src/projections/tpeqd.cpp index b62a95d595..f6f6ca584c 100644 --- a/src/projections/tpeqd.cpp +++ b/src/projections/tpeqd.cpp @@ -90,7 +90,15 @@ PJ *PJ_PROJECTION(tpeqd) { Q->cs = Q->cp1 * Q->sp2; Q->sc = Q->sp1 * Q->cp2; Q->ccs = Q->cp1 * Q->cp2 * sin(Q->dlam2); - Q->z02 = aacos(P->ctx, Q->sp1 * Q->sp2 + Q->cp1 * Q->cp2 * cos(Q->dlam2)); + + const auto SQ = [](double x) { return x * x; }; + // Numerically stable formula for computing the central angle from + // (phi_1, lam_1) to (phi_2, lam_2). + // Special case of Vincenty formula on the sphere. + // https://en.wikipedia.org/wiki/Great-circle_distance#Computational_formulae + const double cs_minus_sc_cos_dlam = Q->cs - Q->sc * cos(Q->dlam2); + Q->z02 = atan2(sqrt(SQ(Q->cp2 * sin(Q->dlam2)) + SQ(cs_minus_sc_cos_dlam)), + Q->sp1 * Q->sp2 + Q->cp1 * Q->cp2 * cos(Q->dlam2)); if (Q->z02 == 0.0) { // Actually happens when both lat_1 = lat_2 and |lat_1| = 90 proj_log_error(P, _("Invalid value for lat_1 and lat_2: their absolute " @@ -98,8 +106,7 @@ PJ *PJ_PROJECTION(tpeqd) { return pj_default_destructor(P, PROJ_ERR_INVALID_OP_ILLEGAL_ARG_VALUE); } Q->hz0 = .5 * Q->z02; - A12 = atan2(Q->cp2 * sin(Q->dlam2), - Q->cp1 * Q->sp2 - Q->sp1 * Q->cp2 * cos(Q->dlam2)); + A12 = atan2(Q->cp2 * sin(Q->dlam2), cs_minus_sc_cos_dlam); const double pp = aasin(P->ctx, Q->cp1 * sin(A12)); Q->ca = cos(pp); Q->sa = sin(pp);