-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_features.py
231 lines (205 loc) · 8.7 KB
/
compute_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# # Copyright (c) Meta Platforms, Inc. and affiliates.
# # LICENSE file in the root directory of this source tree.
# import random
# import os
# from datetime import datetime
# import torch
# import pytorch_lightning as pl
# from dataset.egoexo4d.dataloader import filter_narration, clean_narration_text
# from lib.clip_model import ClipPLModel
# from lib.data_modules import EgoExo4dDataModule, UnsupEgoExo4dDataModule
# from lib.evaluation import evaluate
# from argparse import ArgumentParser
# import yaml
# def train(configs):
# random.seed(1234)
# # Load Model Parameters
# model_hparams = configs.get("model_hparams", {})
# model_name = model_hparams.get("model_name")
# model_suffix = model_hparams.get("model_suffix", "")
# imu_encoder_name = model_hparams.get("imu_encoder_name")
# audio_encoder_name = model_hparams.get("audio_encoder_name")
# video_encoder_name = model_hparams.get("video_encoder_name")
# window_sec = model_hparams.get("window_sec")
# target_fps = model_hparams.get("target_fps")
# datasetname = model_hparams.get("datasetname", "ego4d")
# final_embedding_size = model_hparams.get("final_embedding_size", 512)
# # Params for the trainer
# train_hparams = configs.get("train_hparams", {})
# source_modality = train_hparams.get("source_modality")
# target_modalities = train_hparams.get("target_modalities")
# limit_train_batches = train_hparams.get("limit_train_batches")
# batch_size = train_hparams.get("batch_size")
# max_epochs = train_hparams.get("max_epochs")
# gpus = train_hparams.get("gpus")
# num_workers_for_dm = train_hparams.get("num_workers_for_dm")
# test_only = train_hparams.get("test_only")
# trainer_strategy = train_hparams.get("trainer_strategy")
# freeze_modalities = train_hparams.get("freeze_modalities")
# path_load_pretrained_imu_encoder = train_hparams.get(
# "path_load_pretrained_imu_encoder"
# )
# # Paths, etc.
# path_root_save_dir = f"./saved/{model_name}"
# if not os.path.exists(path_root_save_dir):
# os.makedirs(path_root_save_dir)
# target_modalities.sort()
# list_modalities = [source_modality] + target_modalities
# source_modality_initial = source_modality[0]
# target_modality_initials = "".join([m[0] for m in target_modalities])
# if source_modality == "imu":
# source_encoder_name = imu_encoder_name
# if source_modality == "audio":
# source_encoder_name = audio_encoder_name
# model_identifier = (
# f"{model_name}_s_{source_modality_initial}_t_{target_modality_initials}"
# + f"_se_{source_encoder_name}_w_{window_sec}"
# )
# if model_suffix != "":
# model_identifier += "_" + model_suffix
# else:
# model_identifier += "_%d" % (int(datetime.now().timestamp() % 10000))
# path_save_checkpoint = f"{path_root_save_dir}/{model_identifier}_best.ckpt"
# path_save_src_encoder = f"{path_root_save_dir}/{model_identifier}_src_encoder.pt"
# result_path = f"./results/{model_identifier}"
# configs["path_save_checkpoint"] = path_save_checkpoint
# # Initialize the data module
# dataset_params = {
# "window_sec": window_sec,
# "target_fps": target_fps,
# "list_modalities": list_modalities,
# "clean_narration_func": clean_narration_text,
# "filter_narration_func": filter_narration,
# "imu_sampling_rate": imu_sampling_rate,
# }
# if "text" in list_modalities:
# datamodule = EgoExo4dDataModule(
# batch_size=batch_size,
# num_workers=num_workers_for_dm,
# pin_memory=True,
# drop_last=True,
# dataset_params=dataset_params,
# )
# else:
# datamodule = UnsupEgoExo4dDataModule(
# batch_size=batch_size,
# num_workers=num_workers_for_dm,
# pin_memory=True,
# drop_last=True,
# dataset_params=dataset_params,
# )
# # Initialize encoder models
# text_encoder, video_encoder, imu_encoder = None, None, None
# modality_to_encoder = {}
# if "text" in list_modalities:
# # For now we only use a CLIP-based text model
# text_encoder = ClipPLModel(freeze=True)
# modality_to_encoder["text"] = text_encoder
# if "video" in list_modalities:
# # For now we only use a CLIP-based image model as a video encoder
# video_encoder = (
# ClipPLModel(freeze=True) if text_encoder is None else text_encoder
# )
# video_encoder.video_encoder_name = video_encoder_name
# modality_to_encoder["video"] = video_encoder
# for modality in list_modalities:
# if modality in freeze_modalities:
# modality_to_encoder[modality].eval()
# print("Freezing modality: ", modality)
# modality_to_encoder[modality].freeze()
# # Initialize the training module for contrastive training
# model = MultimodalContrastiveLearningModule(
# modality_to_encoder=modality_to_encoder,
# source_modality=source_modality,
# target_modalities=target_modalities,
# )
# # Checkpoint settings
# checkpoint_callback = pl.callbacks.ModelCheckpoint(
# monitor="val_loss",
# dirpath=path_root_save_dir,
# filename=f"{model_identifier}" + "-{epoch:02d}-{val_loss:.2f}",
# save_top_k=3,
# mode="min",
# )
# # Initialize Trainer
# trainer = pl.Trainer(
# max_epochs=max_epochs,
# gpus=gpus,
# strategy=trainer_strategy,
# limit_train_batches=limit_train_batches,
# enable_checkpointing=True,
# callbacks=[checkpoint_callback],
# )
# if not test_only:
# # Start training
# print("Start training: [%s] ..." % path_save_checkpoint)
# trainer.fit(model, datamodule=datamodule)
# # Save the checkpoint & encoder to a temp folder
# torch.distributed.barrier()
# print("Best checkpoint:", checkpoint_callback.best_model_path)
# model.load_from_checkpoint(
# checkpoint_callback.best_model_path,
# modality_to_encoder=modality_to_encoder,
# source_modality=source_modality,
# target_modalities=target_modalities,
# )
# src_encoder = None
# if source_modality == "imu":
# src_encoder = model.imu_encoder
# elif source_modality == "audio":
# src_encoder = model.audio_encoder
# elif source_modality == "video":
# src_encoder = model.video_encoder
# torch.save(src_encoder.state_dict(), path_save_src_encoder)
# else:
# print("Skipping training ...")
# # Test the performance
# print("Start evaluating ...")
# metrics = evaluate(
# datamodule.get_dataset(
# "test",
# window_sample_rate=1.0,
# video_uid_sample_rate=0.25,
# max_n_windows_per_video=2,
# ),
# datamodule.collate_fn,
# model,
# source_modality,
# target_modalities,
# result_path,
# configs,
# )
# print(metrics)
# return metrics
# if __name__ == "__main__":
# parser = ArgumentParser()
# # Main parameters are defined in a YAML file
# parser.add_argument(
# "--path_configs", default="./configs/train_contrastive/default.yaml"
# )
# # Override-params for a quick resource allocation adjustment or for debugging purposes
# # If it is *not* None, the values in args override the values in the YAML file.
# parser.add_argument("--gpus", default=None)
# parser.add_argument("--num_workers_for_dm", default=None)
# parser.add_argument("--max_epochs", default=None)
# parser.add_argument("--test_only", default=None)
# parser.add_argument("--path_load_pretrained_imu_encoder", default=None)
# args = parser.parse_args()
# # Load the YAML file
# with open(args.path_configs) as f:
# configs = yaml.load(f, Loader=yaml.FullLoader)
# # Override the configs with args, if requested
# if args.gpus is not None:
# configs["train_hparams"]["gpus"] = int(args.gpus)
# if args.num_workers_for_dm is not None:
# configs["train_hparams"]["num_workers_for_dm"] = int(args.num_workers_for_dm)
# if args.max_epochs is not None:
# configs["train_hparams"]["max_epochs"] = int(args.max_epochs)
# if args.test_only is not None:
# configs["train_hparams"]["test_only"] = eval(args.test_only)
# if args.path_load_pretrained_imu_encoder is not None:
# configs["train_hparams"][
# "path_load_pretrained_imu_encoder"
# ] = args.path_load_pretrained_imu_encoder
# print(configs)
# train(configs)