-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pretrain.py
306 lines (264 loc) · 10.9 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from ast import arg
import os
from pprint import pprint
import types
import numpy as np
import torch
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.loggers import WandbLogger
from kaizen.args.setup import parse_args_pretrain
from kaizen.methods import METHODS
from kaizen.distillers import DISTILLERS
from kaizen.distiller_factories import DISTILLER_FACTORIES, base_frozen_model_factory
try:
from kaizen.methods.dali import PretrainABC
except ImportError:
_dali_avaliable = False
else:
_dali_avaliable = True
try:
from kaizen.utils.auto_umap import AutoUMAP
except ImportError:
_umap_available = False
else:
_umap_available = True
from kaizen.utils.checkpointer import Checkpointer
from kaizen.utils.classification_dataloader import prepare_data as prepare_data_classification
from kaizen.utils.pretrain_dataloader import (
prepare_dataloader,
prepare_datasets,
prepare_multicrop_transform,
prepare_n_crop_transform,
prepare_transform,
split_dataset,
split_dataset_subset,
direct_prepare_split_dataset_subset
)
def main():
args = parse_args_pretrain()
if args.dali:
raise NotImplementedError("Dali is not supported")
# online eval dataset reloads when task dataset is over
args.multiple_trainloader_mode = "max_size_cycle" # "min_size"
# set online eval batch size and num workers
# args.online_eval_batch_size = int(args.batch_size) if args.dataset == "cifar100" else None
args.online_eval_batch_size = int(args.batch_size) if args.online_evaluation else None
# split classes into tasks
tasks = None
if args.split_strategy == "class":
assert args.num_classes % args.num_tasks == 0
torch.manual_seed(args.split_seed)
tasks = torch.randperm(args.num_classes).chunk(args.num_tasks)
print("Task Classes:", tasks)
seed_everything(args.global_seed)
# pretrain and online eval dataloaders
if not args.dali:
# asymmetric augmentations
if args.unique_augs > 1:
transform = [
prepare_transform(args.dataset, multicrop=args.multicrop, **kwargs)
for kwargs in args.transform_kwargs
]
else:
transform = prepare_transform(
args.dataset, multicrop=args.multicrop, **args.transform_kwargs
)
if args.debug_augmentations:
print("Transforms:")
pprint(transform)
if args.multicrop:
assert not args.unique_augs == 1
if args.dataset in ["cifar10", "cifar100", "wisdm2019"]:
size_crops = [32, 24]
elif args.dataset == "stl10":
size_crops = [96, 58]
# imagenet or custom dataset
else:
size_crops = [224, 96]
transform = prepare_multicrop_transform(
transform, size_crops=size_crops, num_crops=[args.num_crops, args.num_small_crops]
)
else:
if args.num_crops != 2:
assert args.method == "wmse"
online_eval_transform = transform[-1] if isinstance(transform, list) else transform
task_transform = prepare_n_crop_transform(transform, num_crops=args.num_crops)
train_dataset, online_eval_dataset = prepare_datasets(
args.dataset,
task_transform=task_transform,
online_eval_transform=online_eval_transform,
data_dir=args.data_dir,
train_dir=args.train_dir,
val_dir=args.val_dir,
no_labels=args.no_labels,
)
task_dataset, tasks = split_dataset(
train_dataset,
tasks=tasks,
task_idx=args.task_idx,
num_tasks=args.num_tasks,
split_strategy=args.split_strategy,
split_seed=args.split_seed
)
task_loader = prepare_dataloader(
task_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
)
train_loaders = {f"task{args.task_idx}": task_loader}
if args.replay and args.task_idx != 0:
replay_dataset = direct_prepare_split_dataset_subset(
dataset=args.dataset,
task_transform=task_transform,
online_eval_transform=online_eval_transform,
data_dir=args.data_dir,
train_dir=args.train_dir,
no_labels=args.no_labels,
tasks=tasks,
replay_task_idxs=np.arange(args.task_idx),
num_tasks=args.num_tasks,
split_strategy=args.split_strategy,
split_seed=args.split_seed,
proportion=args.replay_proportion,
num_samples=args.replay_memory_bank_size
)
# replay_dataset = split_dataset_subset(
# train_dataset,
# tasks=tasks,
# replay_task_idxs=np.arange(args.task_idx),
# num_tasks=args.num_tasks,
# split_strategy=args.split_strategy,
# split_seed=args.split_seed,
# proportion=args.replay_proportion,
# num_samples=args.replay_memory_bank_size
# )
replay_loader = prepare_dataloader(
replay_dataset,
batch_size=min(args.replay_batch_size, len(replay_dataset)),
num_workers=args.num_workers,
)
train_loaders.update({"replay": replay_loader})
if args.online_eval_batch_size:
if args.online_evaluation_training_data_source == "all_tasks":
online_eval_dataset_final = online_eval_dataset
elif args.online_evaluation_training_data_source == "current_task":
online_eval_dataset_final, _ = split_dataset(
online_eval_dataset,
tasks=tasks,
task_idx=args.task_idx,
num_tasks=args.num_tasks,
split_strategy=args.split_strategy,
split_seed=args.split_seed
)
elif args.online_evaluation_training_data_source == "seen_tasks":
task_idxs = [i for i in range(args.task_idx + 1)]
online_eval_dataset_final, _ = split_dataset(
online_eval_dataset,
tasks=tasks,
task_idx=task_idxs,
num_tasks=args.num_tasks,
split_strategy=args.split_strategy,
split_seed=args.split_seed
)
online_eval_loader = prepare_dataloader(
online_eval_dataset_final,
batch_size=-(-len(online_eval_dataset_final) // len(task_loader)),## args.online_eval_batch_size,
num_workers=args.num_workers,
)
train_loaders.update({"online_eval": online_eval_loader})
# normal dataloader for when it is available
if args.dataset == "custom" and (args.no_labels or args.val_dir is None):
val_loader = None
elif args.dataset in ["imagenet100", "imagenet"] and args.val_dir is None:
val_loader = None
else:
_, val_loader = prepare_data_classification(
args.dataset,
data_dir=args.data_dir,
train_dir=args.train_dir,
val_dir=args.val_dir,
batch_size=args.batch_size,
num_workers=2 * args.num_workers,
)
# check method
assert args.method in METHODS, f"Choose from {METHODS.keys()}"
# build method
MethodClass = METHODS[args.method]
if args.dali:
assert (
_dali_avaliable
), "Dali is not currently avaiable, please install it first with [dali]."
MethodClass = types.new_class(f"Dali{MethodClass.__name__}", (PretrainABC, MethodClass))
if args.distiller_library == "default":
if args.distiller:
MethodClass = DISTILLERS[args.distiller](MethodClass)
elif args.distiller_library == "factory":
if args.distiller:
MethodClass = base_frozen_model_factory(MethodClass)
MethodClass = DISTILLER_FACTORIES[args.distiller](
MethodClass, distill_current_key="z", distill_frozen_key="frozen_z", output_dim=args.output_dim, class_tag="feature_extractor"
)
if args.classifier_training and args.distiller_classifier is not None:
MethodClass = DISTILLER_FACTORIES[args.distiller_classifier](
MethodClass, distill_current_key="classifier_logits", distill_frozen_key="frozen_logits", output_dim=args.num_classes, class_tag="classifier"
)
model = MethodClass(**args.__dict__, tasks=tasks if args.split_strategy == "class" else None)
# only one resume mode can be true
assert [args.resume_from_checkpoint, args.pretrained_model].count(True) <= 1
if args.resume_from_checkpoint:
pass # handled by the trainer
elif args.pretrained_model:
print(f"Loading previous task checkpoint {args.pretrained_model}...")
state_dict = torch.load(args.pretrained_model, map_location="cpu")["state_dict"]
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"Missing keys:", missing_keys)
print(f"Unexpected keys:", unexpected_keys)
callbacks = []
# wandb logging
if args.wandb:
wandb_logger = WandbLogger(
name=f"{args.name}-task{args.task_idx}",
project=args.project,
entity=args.entity,
offline=args.offline,
reinit=True,
)
if args.task_idx == 0:
wandb_logger.watch(model, log="gradients", log_freq=100)
wandb_logger.log_hyperparams(args)
# lr logging
lr_monitor = LearningRateMonitor(logging_interval="epoch")
callbacks.append(lr_monitor)
if args.save_checkpoint:
# save checkpoint on last epoch only
ckpt = Checkpointer(
args,
logdir=args.checkpoint_dir,
frequency=args.checkpoint_frequency,
)
callbacks.append(ckpt)
if args.auto_umap:
assert (
_umap_available
), "UMAP is not currently avaiable, please install it first with [umap]."
auto_umap = AutoUMAP(
args,
logdir=os.path.join(args.auto_umap_dir, args.method),
frequency=args.auto_umap_frequency,
)
callbacks.append(auto_umap)
trainer = Trainer.from_argparse_args(
args,
logger=wandb_logger if args.wandb else None,
callbacks=callbacks,
checkpoint_callback=False,
terminate_on_nan=True,
)
model.current_task_idx = args.task_idx
if args.dali:
trainer.fit(model, val_dataloaders=val_loader)
else:
trainer.fit(model, train_loaders, val_loader)
if __name__ == "__main__":
main()