-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
executable file
·188 lines (141 loc) · 6.13 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import os
import yaml
import torch
import torch.nn as nn
from tqdm import tqdm
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR, LambdaLR, CosineAnnealingLR
import datasets
import models
import utils
from test import eval
import time
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def make_data_loader(spec, tag=''):
if spec is None:
return None
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
log('{} dataset: size={}'.format(tag, len(dataset)))
for k, v in dataset[0].items():
log(' {}: shape={}'.format(k, tuple(v.shape)))
loader = DataLoader(dataset, batch_size=spec['batch_size'],
shuffle=(tag == 'train'), num_workers=8, pin_memory=True, drop_last=(tag == 'train'))
return loader
def make_data_loaders():
train_loader = make_data_loader(config.get('train_dataset'), tag='train')
val_loader = make_data_loader(config.get('val_dataset'), tag='val')
return train_loader, val_loader
def prepare_training():
if config.get('resume') is not None:
sv_file = torch.load(config['resume'])
model = models.make(sv_file['model'], load_sd=True).cuda()
optimizer = utils.make_optimizer(
model.parameters(), sv_file['optimizer'], load_sd=True)
epoch_start = sv_file['epoch'] + 1
else:
model = models.make(config['model']).cuda()
optimizer = utils.make_optimizer(
model.parameters(), config['optimizer'])
epoch_start = 1
max_epoch = config.get('epoch_max')
log('model: #params={}'.format(utils.compute_num_params(model, text=True)))
return model, optimizer, epoch_start
def train(train_loader, model, optimizer):
model.train()
train_loss = utils.Averager()
for batch in tqdm(train_loader, leave=False, desc='train'):
image = batch['image'].cuda()
flow = batch['flow'].cuda()
gt = batch['gt'].cuda()
depth = batch['depth'].cuda()
model.set_input(image, flow, gt, depth)
model.optimize_parameters()
train_loss.add(model.loss.item())
return train_loss.item()
def main(config_, save_path):
global config, log, writer
config = config_
log, writer = utils.set_save_path(save_path, remove=False)
with open(os.path.join(save_path, 'config.yaml'), 'w') as f:
yaml.dump(config, f, sort_keys=False)
train_loader, val_loader = make_data_loaders()
if config.get('data_norm') is None:
config['data_norm'] = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
model, optimizer, epoch_start = prepare_training()
model.optimizer = optimizer
lr_scheduler = CosineAnnealingLR(model.optimizer, config['epoch_max'], eta_min=1e-5)
n_gpus = len(os.environ['CUDA_VISIBLE_DEVICES'].split(','))
if n_gpus > 1:
model = nn.parallel.DataParallel(model)
epoch_max = config['epoch_max']
epoch_val = config.get('epoch_val')
epoch_save = config.get('epoch_save')
# max_val_v = -1e18
max_val_v = -1e18 if config['eval_type'] != 'ber' else 1e8
timer = utils.Timer()
for epoch in range(epoch_start, epoch_max + 1):
t_epoch_start = timer.t()
log_info = ['epoch {}/{}'.format(epoch, epoch_max)]
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], epoch)
train_loss = train(train_loader, model, optimizer)
lr_scheduler.step()
log_info.append('train loss={:.4f}'.format(train_loss))
writer.add_scalars('loss', {'train ': train_loss}, epoch)
if n_gpus > 1:
model_ = model.module
else:
model_ = model
model_spec = config['model']
model_spec['sd'] = model_.state_dict()
optimizer_spec = config['optimizer']
optimizer_spec['sd'] = optimizer.state_dict()
save(model, save_path)
if (epoch_val is not None) and (epoch % epoch_val == 0):
if n_gpus > 1 and (config.get('eval_bsize') is not None):
model_ = model.module
else:
model_ = model
metric1, metric2 = eval(val_loader, model_,
data_norm=config['data_norm'],
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'))
log_info.append('val: jaccard={:.4f}'.format(metric1))
writer.add_scalars('jaccard', {'val': metric1}, epoch)
log_info.append('val: fmeasure={:.4f}'.format(metric2))
writer.add_scalars('fmeasure', {'val': metric2}, epoch)
t = timer.t()
prog = (epoch - epoch_start + 1) / (epoch_max - epoch_start + 1)
t_epoch = utils.time_text(t - t_epoch_start)
t_elapsed, t_all = utils.time_text(t), utils.time_text(t / prog)
log_info.append('{} {}/{}'.format(t_epoch, t_elapsed, t_all))
log(', '.join(log_info))
writer.flush()
def save(model, save_path):
torch.save(model.encoder.state_dict(), os.path.join(save_path, "model.pth"))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--name', default=None)
parser.add_argument('--tag', default=None)
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
print('config loaded.')
save_name = args.name
if save_name is None:
save_name = '_' + args.config.split('/')[-1][:-len('.yaml')]
if args.tag is not None:
save_name += '_' + args.tag
save_path = os.path.join('./save', save_name)
if save_name is None:
save_name = '_' + args.config.split('/')[-1][:-len('.yaml')]
save_path = os.path.join('../DATTT_ckpt', save_name)
main(config, save_path)