Skip to content

Latest commit

 

History

History
308 lines (247 loc) · 11.1 KB

README.md

File metadata and controls

308 lines (247 loc) · 11.1 KB

PrimA6D

Note

  • Our study, PrimA6D, is accepted for RA-L.
  • The extended version, PrimA6D++, is accepted for RA-L.

TODO

  • Method Summary
  • Source Code Release for Pose Estimation Method
  • Source Code Release for Multi-Object Pose Optimization Method

What Is PrimA6D?


How To Use: 6D Object Pose Estimation

Environment Setup

  • Download Repo

    $ git clone git@github.com:rpmsnu/PrimA6D.git
  • Docker Image Download & Run

    $ docker pull jmong1994/jeon:prima6d_new

    We provide a docker image with an environment setup. You can download this docker image on the docker hub.

  • 3D Model Download
    Download 3D Models.

    $ mv 3d_models.zip /path/to/PrimA6D/Pose-Estimation/dataset/3d_model/
    $ cd /path/to/PrimA6D/Pose-Estimation/dataset/3d_model/
    $ unzip 3d_models.zip
  • Dataset Download

    • Download Sun2012Pascal and BOP dataset
    $ cd /path/to/PrimA6D/Pose-Estimation/dataset/raw_dataset
    $ bash get_sun2012pascalformat.sh
    $ cd bop          
    $ bash get_bop_ycbv.sh          

How To Use: PrimA6D

  • Inference

    • Run docker
    $ xhost +local:docker
    $ docker run --gpus all -it --env="DISPLAY" --net=host --ipc=host --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v /:/mydata jmong1994/jeon:prima6d_new bash 
    $ export PrimA6D_path="/path/to/PrimA6D"
    • Prepare data
    $ cd $PrimA6D_path/Pose-Estimation/dataset/YCB
    $ python3 YCB_test.py -o=[obj_id] 

    For example, to prepare the No.1 of YCB object, python3 YCB_train_synthetic.py -o=1

    • Test Model
    $ cd $PrimA6D_path/Pose-Estimation/PrimA6D
    $ python3 4_test_all.py -o=[obj_id] -w         

    For example, to infer the No.1 of YCB object, python3 4_test_all.py -o=1 -w

    For the corresponding object,
    Download PrimA6D weights and save these to $PrimA6D_path/Pose-Estimation/PrimA6D/trained_weight.
    Download Segmentation weights and save these to $PrimA6D_path/Pose-Estimation/Segmentation/trained_weight.

  • Train

    • Run docker
    $ xhost +local:docker
    $ docker run --gpus all -it --env="DISPLAY" --net=host --ipc=host --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v /:/mydata jmong1994/jeon:prima6d_new bash 
    $ export PrimA6D_path="/path/to/PrimA6D"
    • Prepare data
    $ cd $PrimA6D_path/Pose-Estimation/dataset/YCB
    $ python3 YCB_train_synthetic.py -o=[obj_id]
    $ python3 YCB_train_pbr.py -o=[obj_id]    
    $ python3 YCB_train_real.py -o=[obj_id] 
    $ python3 YCB_test.py -o=[obj_id] 

    For example, to prepare the No.1 of YCB object, python3 YCB_train_synthetic.py -o=1

    • Train & Test model
    $ cd $PrimA6D_path/Pose-Estimation/PrimA6D
    $ python3 1_train_generator.py -o=[obj_id]
    $ python3 2_train_keypoint.py -o=[obj_id]    
    $ python3 3_train_translation.py -o=[obj_id]    
    $ python3 4_test_all.py -o=[obj_id] 

    For example, to train the No.1 of YCB object, python3 1_train_generator.py -o=1

How To Use: PrimA6D++

  • Inference

    • Run docker
    $ xhost +local:docker
    $ docker run --gpus all -it --env="DISPLAY" --net=host --ipc=host --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v /:/mydata jmong1994/jeon:prima6d_new bash 
    $ export PrimA6D_path="/path/to/PrimA6D"
    • Prepare data
    $ cd $PrimA6D_path/Pose-Estimation/dataset/YCB
    $ python3 YCB_test.py -o=[obj_id] 

    For example, to prepare the No.1 of YCB object, python3 YCB_train_synthetic.py -o=1

    • Test model
    $ cd $PrimA6D_path/Pose-Estimation/PrimA6D++
    $ python3 test_prima6d.py -o=[obj_id] -w         

    For example, to infer the No.1 of YCB object, python3 test_prima6d.py -o=1 -w

    For the corresponding object,
    Download PrimA6D++ weights and save these to $PrimA6D_path/Pose-Estimation/PrimA6D/trained_weight.
    Download Segmentation weights and save these to $PrimA6D_path/Pose-Estimation/Segmentation/trained_weight.

  • Train

    • Run docker
    $ xhost +local:docker
    $ docker run --gpus all -it --env="DISPLAY" --net=host --ipc=host --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v /:/mydata jmong1994/jeon:prima6d_new bash 
    $ export PrimA6D_path="/path/to/PrimA6D"
    • Prepare data
    $ cd $PrimA6D_path/Pose-Estimation/dataset/YCB
    $ python3 YCB_train_synthetic.py -o=[obj_id]
    $ python3 YCB_train_pbr.py -o=[obj_id]    
    $ python3 YCB_train_real.py -o=[obj_id] 
    $ python3 YCB_test.py -o=[obj_id] 

    For example, to prepare the No.1 of YCB object, python3 YCB_train_synthetic.py -o=1

    • Train & Test model
    $ cd $PrimA6D_path/Pose-Estimation/PrimA6D++
    $ python3 train_prima6d.py -o=[obj_id]
    $ python3 test_prima6d.py -o=[obj_id] 

    For example, to train the No.1 of YCB object, python3 train_prima6d.py -o=1

  • Real-Time Demo with ROS

    $ roscore

    In the new terminal,

    $ xhost +local:docker
    $ docker run --gpus all -it --env="DISPLAY" --net=host --ipc=host --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" -v /:/mydata jmong1994/jeon:prima6d_new bash 
    $ export PrimA6D_path="/path/to/PrimA6D"   
    $ cd $PrimA6D_path/Pose-Estimation/ros
    $ python3 ros_PrimD_torch.py -o=[obj_id]         

    For example, to run the No.4 and No.5 of YCB object, python3 ros_PrimD_torch.py -o="4 5"

    In the new terminal,

    $ rosbag play simple_demo.bag           
    • Check result You can check the result using the rviz in the new terminal.

    You can also run this real-time demo using a camera that provides 640x480 RGB data.


How To Use: Object-SLAM for Multi-Object Pose Optimization

Environment Setup

  • Download Data Processor for file player

    refer to Data Processor

  • install osmesa

    $ export PrimA6D_path="/path/to/PrimA6D"
    $ cd $PrimA6D_path/Multi-Object-Pose-Optimization/src/pose_optimization/bop_renderer/osmesa-install/build
    $ sudo mkdir /opt/osmesa
    $ sudo chmod 777 /opt/osmesa
    $ sudo mkdir /opt/llvm
    $ sudo chmod 777 /opt/llvm   
    $ sudo bash ../osmesa-install.sh
    $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/osmesa/lib:/opt/llvm/lib
  • build ros package

    $ export PrimA6D_path="/path/to/PrimA6D"
    $ cd $PrimA6D_path/Multi-Object-Pose-Optimization
    $ catkin build --save-config --cmake-args -DCMAKE_BUILD_TYPE=Release
  • Downliad 3D models

    • download 3d_model.
    • unzip to $PrimA6D_path/Multi-Object-Pose-Optimization/src/pose_optimization/3d_model/
  • run

    $ cd $PrimA6D_path/Multi-Object-Pose-Optimization
    $ source devel/setup.bash
    $ roslaunch pose_optimization run_franka.launch   

    And then,

    Play sensor data using Data Processor

Citation

Please consider citing the paper as:

@ARTICLE{jeon-2020-prima6d,
  author={Jeon, Myung-Hwan and Kim, Ayoung},
  journal={IEEE Robotics and Automation Letters}, 
  title={PrimA6D: Rotational Primitive Reconstruction for Enhanced and Robust 6D Pose Estimation}, 
  year={2020},
  volume={5},
  number={3},
  pages={4955-4962},
  doi={10.1109/LRA.2020.3004322}
}

@ARTICLE{jeon-2022-prima6d,
  author={Jeon, Myung-Hwan and Kim, Jeongyun and Ryu, Jee-Hwan and Kim, Ayoung},
  journal={IEEE Robotics and Automation Letters}, 
  title={Ambiguity-Aware Multi-Object Pose Optimization for Visually-Assisted Robot Manipulation}, 
  year={2023},
  volume={8},
  number={1},
  pages={137-144},
  doi={10.1109/LRA.2022.3222998}
}

Contact

If you have any questions, contact here please

myunghwan.jeon.offl@gmail.com