-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathqoppav4.py
180 lines (134 loc) · 5.6 KB
/
qoppav4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# -*- coding: utf-8 -*-
"""
Created on Wed Jul 31 17:15:19 2024
@author: ektop
"""
import networkx as nx
import numpy as np
from random import uniform
from math import pi
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
alpha = 1 # coupling strength
Dt = 0.01 # Delta t
m = 1 # Assume mass as 1 for simplicity
def initialize():
global g, nextg
g = nx.karate_club_graph()
for i in list(g.nodes()):
g.node[i]['theta'] = 2 * pi * np.random.random()
g.node[i]['omega'] = 1. + uniform(-0.05, 0.05)
nextg = g.copy()
def observe():
global g
plt.clf()
nx.draw(g, cmap=plt.cm.hsv, vmin=-1, vmax=1,
node_color=[np.sin(g.node[i]['theta']) for i in list(g.nodes())],
pos=nx.spring_layout(g))
plt.title('Network Visualization')
plt.show()
def gauss_mouse_map(phase):
return np.sin(phase)
def update():
global g, nextg, chaotic_numbers_data, timestamps, frequency_shifts, action_derivative_values
chaotic_numbers = []
angular_accelerations = np.zeros(len(g.nodes()))
action_derivative = 0 # Initialize action derivative for this timestep
previous_angular_velocities = np.array([g.node[i]['omega'] for i in g.nodes()])
for i in list(g.nodes()):
theta_i = g.node[i]['theta']
omega_i = g.node[i]['omega']
# Update angular position using Euler's method
nextg.node[i]['theta'] = theta_i + omega_i * Dt + (alpha * (
np.sum(np.sin(g.node[j]['theta'] - theta_i) for j in g.neighbors(i))
/ g.degree(i))) * Dt
angular_accelerations[i] = (nextg.node[i]['theta'] - theta_i) / Dt
chaotic_number = gauss_mouse_map(g.node[i]['theta'])
chaotic_numbers.append(chaotic_number)
# Compute derivative of action
for i in range(len(g.nodes())):
action_derivative += 0.5 * m * previous_angular_velocities[i] * angular_accelerations[i]
action_derivative_values.append(action_derivative) # Store action derivative over time
# Calculate frequency shifts
if len(chaotic_numbers_data) > 0:
previous_chaotic_numbers = chaotic_numbers_data[-1]
frequency_shift = [chaotic_numbers[j] - previous_chaotic_numbers[j] for j in range(len(chaotic_numbers))]
frequency_shifts.append(np.mean(frequency_shift)) # Store the average frequency shift over time
else:
frequency_shifts.append(0) # No shift initially
# Update the states
g, nextg = nextg, g
chaotic_numbers_data.append(chaotic_numbers)
timestamps.append(len(chaotic_numbers_data))
def initialize_and_update():
initialize()
update()
import pycxsimulator
# Initialize lists to store data
chaotic_numbers_data = []
frequency_shifts = []
action_derivative_values = [] # List to store action derivatives over time
timestamps = [] # Initialize timestamps
# Run the simulation
pycxsimulator.GUI().start(func=[initialize, observe, update])
# Create scatter plot of chaotic number values vs timestamps
plt.figure(figsize=(12, 5))
for i, chaotic_numbers in enumerate(chaotic_numbers_data):
colors = ['r' if num >= 0 else 'b' for num in chaotic_numbers]
plt.scatter([timestamps[i]] * len(chaotic_numbers), chaotic_numbers, color=colors, alpha=0.5)
plt.xlabel('Timestamp')
plt.ylabel('Chaotic Number Value')
plt.title('Scatter Plot of Chaotic Number Values vs Timestamp')
plt.show()
# Create scatter plot of frequency shifts
plt.figure(figsize=(12, 5))
for i, shift in enumerate(frequency_shifts):
plt.scatter(timestamps[i], shift, color='g', alpha=0.5)
plt.xlabel('Timestamp')
plt.ylabel('Average Frequency Shift')
plt.title('Scatter Plot of Frequency Shifts vs Timestamp')
plt.show()
# New: Plot action derivatives over time
plt.figure(figsize=(12, 5))
plt.plot(timestamps, action_derivative_values, marker='o', linestyle='-')
plt.title('Action Derivative over Time')
plt.xlabel('Timestamp')
plt.ylabel('Action Derivative')
plt.grid()
plt.show()
# New: Create scatter plot of action derivative vs chaotic numbers
plt.figure(figsize=(12, 5))
for i, chaotic_numbers in enumerate(chaotic_numbers_data):
for j in range(len(chaotic_numbers)):
plt.scatter(action_derivative_values[i], chaotic_numbers[j], color='red', alpha=0.5)
plt.title('Chaotic Numbers vs Action Derivative')
plt.xlabel('Action Derivative')
plt.ylabel('Chaotic Number Value')
plt.grid()
plt.show()
# New: Plot frequency shifts vs actions
plt.figure(figsize=(12, 5))
plt.scatter(action_derivative_values, frequency_shifts, color='orange', alpha=0.5)
plt.title('Frequency Shifts vs Action Derivative')
plt.xlabel('Action Derivative')
plt.ylabel('Average Frequency Shift')
plt.grid()
plt.show()
# Assuming you have the following variables defined
# timestamps, action_derivative_values, frequency_shifts
# Create a figure
fig = plt.figure(figsize=(12, 8))
# Create a 3D scatter plot
ax = fig.add_subplot(111, projection='3d')
# Create a scatter plot, using timestamps, action derivatives, and chaotic numbers
scatter = ax.scatter(timestamps, action_derivative_values, frequency_shifts,
c=action_derivative_values, cmap='viridis', alpha=0.5)
# Add titles and labels
ax.set_title('3D Visualization of Action Derivative, Frequency Shift, va Timestamps')
ax.set_xlabel('Timestamp')
ax.set_ylabel('Action Derivative')
ax.set_zlabel('Frequency Shift Value')
# Show color bar for reference
plt.colorbar(scatter, label='Action Derivative')
# Show the plot
plt.show()