You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(naive_bayes_classifier.py)
a. tokenize tweet text
b. normalize text
c. remove noise
d. calculate word density
e. prepare data for training the classifier
f. build&test model
g. calculate accuracy
h. collect new data: extract airline-related tweets from raw tweets
(parse_new_tweets.py)
i. deploy the trained model on new data
Files:
negative_tweets.csv: for model training
positive_tweets.csv: for model training
parsed_tweet_0.csv: new data for predicting
parsed_tweet_0_(with_prediction).xlsx: new data with predicted sentiment values(predicted with a 92.1% accuracy model)
2. GeoSpatial Analysis:
Input file:
input_Tweets.csv
Count location frequency and its output:
tweet_location_count.py
location counts.csv
Edit the output and analyze it in Power BI
edited location counts.csv
Power BI.pbix
Export the visualization as images
US map.png, US_Alaska.png, US_Hawaii.png, world_map.png