-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun_naf2.py
314 lines (251 loc) · 9.65 KB
/
run_naf2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""Script to run the NAF2 agent on the inverted pendulum.
Includes also a visualisation of the environment and a video."""
import os
import pickle
import random
import sys
import gym
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from inverted_pendulum import PendulumEnv
from naf2_new import NAF
# set random seed
random_seed = 111
np.random.seed(random_seed)
random.seed(random_seed)
def plot_results(env, file_name):
# plotting
print('Now plotting')
rewards = env.rewards
initial_rewards = env.init_rewards
# print('initial_rewards :', initial_rewards)
iterations = []
final_rews = []
starts = []
sum_rews = []
mean_rews = []
for i in range(len(rewards)):
if (len(rewards[i]) > 0):
final_rews.append(rewards[i][len(rewards[i]) - 1])
iterations.append(len(rewards[i]))
sum_rews.append(np.sum(rewards[i]))
mean_rews.append(np.mean(rewards[i]))
try:
starts.append(initial_rewards[i])
except:
pass
plot_suffix = "" # f', number of iterations: {env.TOTAL_COUNTER}, Linac4 time: {env.TOTAL_COUNTER / 600:.1f} h'
fig, axs = plt.subplots(2, 1)
ax = axs[0]
color = 'blue'
ax.plot(iterations, c=color)
ax.set_ylabel('steps', color=color)
ax.tick_params(axis='y', labelcolor=color)
ax1 = plt.twinx(ax)
color = 'k'
ax1.plot(np.cumsum(iterations), c=color)
ax1.set_ylabel('cumulative steps', color=color)
ax.set_title('Iterations' + plot_suffix)
# fig.suptitle(label, fontsize=12)
ax = axs[1]
color = 'red'
ax.plot(starts, c=color)
ax.set_ylabel('starts', color=color)
ax.axhline(-0.05, ls=':', color='r')
ax.tick_params(axis='y', labelcolor=color)
ax.set_title('Final reward per episode') # + plot_suffix)
ax.set_xlabel('# episode')
ax1 = plt.twinx(ax)
color = 'lime'
ax1.set_ylabel('finals', color=color)
ax1.axhline(-0.05, ls=':', color=color)
ax1.tick_params(axis='y', labelcolor=color)
ax1.plot(final_rews, color=color)
fig.tight_layout()
plt.savefig(file_name + '_episodes.pdf')
plt.show()
fig, ax = plt.subplots(1, 1)
color = 'blue'
ax.plot(sum_rews, color)
ax.set_ylabel('cum. reward', color=color)
ax.set_xlabel('# episode')
ax.tick_params(axis='y', labelcolor=color)
ax1 = plt.twinx(ax)
color = 'lime'
ax1.plot(mean_rews, c=color)
ax1.set_ylabel('mean reward', color=color) # we already handled the x-label with ax1
ax1.tick_params(axis='y', labelcolor=color)
plt.savefig(file_name + '_rewards.pdf')
plt.show()
def plot_convergence(agent, file_name):
losses, vs = agent.losses, agent.vs
# losses2, vs2 = agent.losses2, agent.vs2
fig, ax = plt.subplots()
# ax.set_title(label)
ax.set_xlabel('# steps')
color = 'tab:blue'
# ax.semilogy(losses2, color=color)
ax.tick_params(axis='y', labelcolor=color)
ax.set_ylabel('td_loss', color=color)
ax.semilogy(losses, color=color)
# ax.set_ylim(0, 1)
ax1 = plt.twinx(ax)
# ax1.set_ylim(-2, 1)
color = 'lime'
ax1.set_ylabel('V', color=color) # we already handled the x-label with ax1
ax1.tick_params(axis='y', labelcolor=color)
ax1.plot(vs, color=color)
# ax1.plot(vs2, color=color)
plt.savefig(file_name + '_convergence' + '.pdf')
plt.show()
class MonitoringEnv(gym.Wrapper):
'''
Gym Wrapper to store information for scaling to correct scpace and for post analysis.
'''
def __init__(self, env, **kwargs):
self.plot_label = False
if 'plot_progress' in kwargs:
self.plot_label = kwargs.get('plot_progress')
gym.Wrapper.__init__(self, env)
self.rewards = []
self.init_rewards = []
self.current_episode = -1
self.current_step = -1
self.obs_dim = self.env.observation_space.shape
self.obs_high = self.env.observation_space.high
self.obs_low = self.env.observation_space.high
self.act_dim = self.env.action_space.shape
self.act_high = self.env.action_space.high
self.act_low = self.env.action_space.low
# state space definition
self.observation_space = gym.spaces.Box(low=-1.0,
high=1.0,
shape=self.obs_dim,
dtype=np.float64)
# action space definition
self.action_space = gym.spaces.Box(low=-1.0,
high=1.0,
shape=self.act_dim,
dtype=np.float64)
def scale_state_env(self, ob):
scale = (self.env.observation_space.high - self.env.observation_space.low)
return (2 * ob - (self.env.observation_space.high + self.env.observation_space.low)) / scale
def scale_rew(self, rew):
rew = (rew/10)+1
return np.clip(rew, -1, 1)
def reset(self, **kwargs):
self.current_step = 0
self.current_episode += 1
self.rewards.append([])
return self.scale_state_env(self.env.reset(**kwargs))
def step(self, action):
self.current_step += 1
ob, reward, done, info = self.env.step(self.descale_action_env(action)[0])
self.rewards[self.current_episode].append(reward)
if self.current_step >= 200:
done = True
if self.plot_label:
self.plot_results(self.current_episode)
ob = self.scale_state_env(ob)
reward = self.scale_rew(reward)
# env.render()
# print(action, ob, reward)
return ob, reward, done, info
def descale_action_env(self, act):
scale = (self.env.action_space.high - self.env.action_space.low)
return_value = (scale * act + self.env.action_space.high + self.env.action_space.low) / 2
return return_value
def plot_results(self, label):
# plotting
rewards = self.rewards
iterations = []
final_rews = []
starts = []
sum_rews = []
mean_rews = []
for i in range(len(rewards)):
if (len(rewards[i]) > 0):
final_rews.append(rewards[i][len(rewards[i]) - 1])
iterations.append(len(rewards[i]))
sum_rews.append(np.sum(rewards[i]))
mean_rews.append(np.mean(rewards[i]))
fig, ax = plt.subplots(1, 1)
ax.set_title(label=label)
color = 'blue'
ax.plot(sum_rews, color)
ax.set_ylabel('cum. reward', color=color)
ax.set_xlabel('# episode')
ax.tick_params(axis='y', labelcolor=color)
plt.show()
if __name__ == '__main__':
try:
random_seed = int(sys.argv[2])
except:
random_seed = 25
try:
file_name = sys.argv[1] + '_' + str(random_seed)
except:
file_name = 'Data/NEW_tests' + str(random_seed) + '_'
# set random seed
tf.random.set_seed(random_seed)
np.random.seed(random_seed)
try:
root_dir = sys.argv[3]
except:
root_dir = "checkpoints/pendulum_video2/"
directory = root_dir + file_name + '/'
if not os.path.exists(directory):
os.makedirs(directory)
try:
index = int(sys.argv[4])
parameter_list = [
dict()
]
parameters = parameter_list[index]
print('Just a test...')
except:
parameters = dict()
is_continued = False # False if is_train else True
# We normalize in a MonitoringEnv state action and reward to [-1,1] for the agent and plot results
env = MonitoringEnv(env=PendulumEnv(), plot_progress=False)
# If you want a video:
env = gym.wrappers.Monitor(env, "recording2", force=True, video_callable=lambda episode_id: episode_id%10==0)
nafnet_kwargs = dict(hidden_sizes=[100, 100], activation=tf.nn.tanh
, kernel_initializer=tf.random_normal_initializer(0, 0.05, seed=random_seed))
action_size = env.action_space.shape[-1]
noise_info = dict(noise_function=lambda action, nr: action + np.random.randn(action_size) * 1 / (nr + 1))
# the target network is updated at the end of each episode
# the number of episodes is executed each step in the environment
training_info = dict(polyak=0.999, batch_size=100, steps_per_batch=10, epochs=1,
learning_rate=1e-3, discount=0.9999)
# init the agent
agent = NAF(env=env, directory=directory, noise_info=noise_info,
is_continued=is_continued, q_smoothing=0.001, clipped_double_q=True,
training_info=training_info, save_frequency=5000,
**nafnet_kwargs)
# run the agent training
agent.training(warm_up_steps=200, initial_episode_length=200, max_episodes=100, max_steps=500)
# run the agent verification
# agent.verification(max_episodes=10, max_steps=500)
# plot the results
files = []
for f in os.listdir(directory):
if 'plot_data' in f and 'pkl' in f:
files.append(f)
print(files)
if len(files) > 0:
file_name = directory + f'plot_data_{len(files)}'
else:
file_name = directory + 'plot_data_0'
plot_convergence(agent=agent, file_name=file_name)
plot_results(env, file_name=file_name)
out_put_writer = open(file_name + '.pkl', 'wb')
out_rewards = env.rewards
# out_inits = env.initial_conditions
out_losses, out_vs = agent.losses, agent.vs
pickle.dump(out_rewards, out_put_writer, -1)
# pickle.dump(out_inits, out_put_writer, -1)
pickle.dump(out_losses, out_put_writer, -1)
pickle.dump(out_vs, out_put_writer, -1)
out_put_writer.close()