-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathex_meta2.v
3931 lines (3426 loc) · 105 KB
/
ex_meta2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Require Import Utf8_core.
Require ILLVarInt. (* Don't want import it. *)
Import ILLVarInt.MILL. (* only this *)
Import ILLVarInt.Tacs. (* only this *)
Require Import unprove.
Import FormulaMultiSet. (* and this *)
Require Import ILL_equiv.
Require Import emma_orig.
Open Scope ILL_scope.
Open Scope Emma.
(* Ltac up x := repeat progress setoid_rewrite (add_comm _ x). *)
Inductive boolP : Prop := trueP:boolP | falseP:boolP.
Program Fixpoint exists_AtheseA_on_formula
(cont: forall (e1:env) (f1:formula) (h1: e1 ⊢ f1),boolP)
(φl φr:formula) (e:env) (f:formula) (h: e ⊢ f) {struct h}: boolP :=
match h with
| Oplus_R_1 _ p q x =>
if FormulaOrdered.eq_dec p φl
then if FormulaOrdered.eq_dec q φr
then cont _ _ x
else exists_AtheseA_on_formula cont φl φr _ _ x
else exists_AtheseA_on_formula cont φl φr _ _ x
| Oplus_R_2 _ q p x =>
if FormulaOrdered.eq_dec p φl
then if FormulaOrdered.eq_dec q φr
then cont _ _ x
else exists_AtheseA_on_formula cont φl φr _ _ x
else exists_AtheseA_on_formula cont φl φr _ _ x
| Id _ _ p => falseP
| Impl_R _ p q x => exists_AtheseA_on_formula cont φl φr _ _ x
| Impl_L _ Δ Δ' p q r _ _ x x0 => if exists_AtheseA_on_formula cont φl φr _ _ x then trueP else exists_AtheseA_on_formula cont φl φr _ _ x0
| Times_R _ Δ p q _ _ x x0 => if exists_AtheseA_on_formula cont φl φr _ _ x then trueP else exists_AtheseA_on_formula cont φl φr _ _ x0
| Times_L _ p q r _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| One_R _ _ => falseP
| One_L _ p _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| And_R _ p q x x0 => if exists_AtheseA_on_formula cont φl φr _ _ x then trueP else exists_AtheseA_on_formula cont φl φr _ _ x0
| And_L_1 _ p q r _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| And_L_2 _ p q r _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| Oplus_L _ p q r _ x x0 => if exists_AtheseA_on_formula cont φl φr _ _ x then trueP else exists_AtheseA_on_formula cont φl φr _ _ x0
| T_ _ => falseP
| Zero_ _ p x => falseP
| Bang_D _ p q _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| Bang_C _ p q _ x => exists_AtheseA_on_formula cont φl φr _ _ x
| Bang_W _ p q _ x => exists_AtheseA_on_formula cont φl φr _ _ x
end.
Eval vm_compute in exists_AtheseA_on_formula (fun _ _ _ => trueP) A M _ _ emma_orig.originelle.
Eval vm_compute in exists_AtheseA_on_formula (fun _ _ _ => trueP) A M _ _ emma_orig.simpl_ex.
Lemma exists_AtheseA_on_formula_proof_eq_compat :
∀ f1 f2 Γ Γ' φ (h1:Γ⊢φ) (h2:Γ'⊢φ),
Proof_eq.eq h1 h2 ->
exists_AtheseA_on_formula (fun _ _ _ => trueP) f1 f2 _ _ h1 = exists_AtheseA_on_formula (fun _ _ _ => trueP) f1 f2 _ _ h2.
Proof.
intros f1 f2 Γ Γ' φ h1 h2 H.
induction H;simpl.
- reflexivity.
- auto.
- rewrite IHeq1;rewrite IHeq2;reflexivity.
- rewrite IHeq1;rewrite IHeq2;reflexivity.
- rewrite IHeq;reflexivity.
- reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq1;rewrite IHeq2;reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq1;rewrite IHeq2;reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq;reflexivity.
- reflexivity.
- reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq;reflexivity.
- rewrite IHeq;reflexivity.
Qed.
Lemma exists_AtheseA_on_formula_proof_eq_pre_morph_compat :
∀ f1 f2 Γ Γ' φ (h1:Γ⊢φ) (h2:Γ==Γ'),
exists_AtheseA_on_formula (fun _ _ _ => trueP) f1 f2 _ _ h1 = exists_AtheseA_on_formula (fun _ _ _ => trueP) f1 f2 _ _ (ILL_proof_pre_morph φ Γ Γ' h2 h1).
Proof.
intros f1 f2 Γ Γ' φ h1 h2.
apply exists_AtheseA_on_formula_proof_eq_compat.
apply Proof_eq.sym;apply Proof_eq.eq_pre_morph.
Qed.
Lemma simple: {P&1, B&1, (V⊸A)&1, (E⊸A)&1,(P⊸M)&1,B ⊸ 1,V}⊢A⊕M.
Proof with try solve [ apply Id;reflexivity | prove_multiset_eq].
and_l_1 B 1.
weak_impl_l B 1...
one_l.
and_l_2 P 1.
and_l_2 (E ⊸ A) 1.
and_l_2 (P ⊸ M) 1.
repeat one_l.
and_l_1 (V ⊸ A) 1... (* !D au lieu de WL *)
weak_impl_l V A...
apply Oplus_R_1...
Qed.
(*
Notation "'all_proofs_of' x" := (forall (p:x), exists_AtheseA_on_formula (fun _ _ _ => trueP) A M _ _ p =trueP) (at level 80,only parsing).
Notation "'no_proof_for' x" := (forall (p:x), False) (at level 80,only parsing).
*)
Definition all_proofs_of env gamma := (forall (p:env⊢gamma), exists_AtheseA_on_formula (fun _ _ _ => trueP) A M _ _ p =trueP).
Definition no_proof_for env gamma := (forall (p:env⊢gamma), False).
#[local] Hint Unfold all_proofs_of no_proof_for : proof.
Lemma all_proofs_of_pre_morph : forall φ Γ Γ',
all_proofs_of Γ φ -> eq_bool Γ Γ' = true -> all_proofs_of Γ' φ.
Proof.
unfold all_proofs_of.
intros φ Γ Γ' Hall Heq p.
apply eq_bool_correct in Heq.
assert (h:exists p': Γ⊢φ, Proof_eq.eq p p').
symmetry in Heq; exists (ILL_proof_pre_morph _ _ _ Heq p).
apply Proof_eq.sym;apply Proof_eq.eq_pre_morph.
destruct h as [p' h].
rewrite exists_AtheseA_on_formula_proof_eq_compat with (h2:=p') (1:=h); auto.
Qed.
#[local] Hint Resolve all_proofs_of_pre_morph : proof.
Lemma all_proofs_of_pre_morph' :
forall φ Γ Γ', all_proofs_of Γ φ -> eq_bool Γ Γ' = true ->
forall (p:Γ'⊢φ), exists_AtheseA_on_formula (fun _ _ _ => trueP) A M _ _ p =trueP.
Proof.
intros φ Γ Γ' H H0 p.
eapply all_proofs_of_pre_morph;eassumption.
Qed.
#[local] Hint Resolve all_proofs_of_pre_morph' : proof.
#[local] Hint Rewrite all_proofs_of_pre_morph' : proof.
Require Import Setoid.
Add Morphism all_proofs_of with signature (eq ==> Logic.eq ==> iff) as
all_proof_of_morph.
Proof.
intros x y H y0.
split;intros; eapply all_proofs_of_pre_morph;try eassumption.
apply eq_bool_complete;assumption.
apply eq_bool_complete;symmetry;assumption.
Qed.
#[local] Hint Extern 0 ( _ == _ ) => apply eq_bool_correct;vm_compute;reflexivity : proof.
Tactic Notation "complete" tactic1(t) := t; fail.
Ltac clean p :=
try complete eauto 2 with proof;
(dependent simple inversion p||inversion p);clear p;subst;try discriminate;simpl.
Ltac decompose_add :=
repeat (match goal with
| H : _ ∈ (_ :: _) |- _ =>
destruct (mem_destruct _ _ _ H);clear H
| H : _ ∈ ∅ |- _ =>
rewrite empty_no_mem in H;discriminate
| H : ILLVarInt.MILL.eq _ _ |- _ => apply eq_is_eq in H;subst
end).
Ltac var_not_in_env_tac_simple n' H :=
elim unusable_var_in_env with (n:=n') (1:=H);
[
vm_compute;reflexivity |
vm_compute;reflexivity |
vm_compute;reflexivity |
vm_compute;reflexivity |
intros;decompose_add;simpl in *;repeat split;try discriminate;reflexivity
]
.
Ltac var_not_in_env_tac_aux H env :=
match env with
| Proposition ?n::?env' =>
(complete (var_not_in_env_tac_simple n H)) ||
var_not_in_env_tac_aux H env'
| _ :: ?env' => var_not_in_env_tac_aux H env'
end.
Ltac var_not_in_env_tac H :=
match type of H with
| ?env ⊢ _ =>
var_not_in_env_tac_aux H env
end.
Ltac is_var_env gamma :=
match gamma with
| empty => fail 1
| _ :: _ => fail 1
| _ \ _ => fail 1
| _ ∪ _ => fail 1
| _ => idtac
end.
Ltac finish :=
simpl;try reflexivity;
try discriminate;
try complete auto with proof;
try autorewrite with proof;
try complete (apply False_ind;auto with proof);
match goal with
|- (if ?e then trueP else trueP ) = trueP =>
case e;reflexivity
| i:?e⊢Proposition ?n' |- _ =>
elim var_in_env with (n:=n') (3:=i);vm_compute;reflexivity
| H: ?env⊢?g |- _ =>
complete var_not_in_env_tac H
| H : ?s == ?t |- _ =>
(complete (apply eq_bool_complete in H;vm_compute in H;
discriminate))|| (progress repeat (rewrite H in * ))
end.
Ltac tutu :=
simpl;try reflexivity;
try discriminate;
(* try complete auto with proof; *)
(* try autorewrite with proof; *)
match goal with
| H : ?t = ?t |- _ => clear H
| H : ?t == ?t |- _ => clear H
| H:_ :: _ == _ ∪ _ |- _ =>
symmetry in H
| H: _ ∪ _ == _ :: _ |- _ =>
let delta := fresh "Δ" in
let h1 := fresh "H" in
let h2 := fresh "H" in
destruct (union_decompose _ _ _ _ H)
as [[delta [h1 h2]]|[delta [h1 h2]]];clear H
| H: empty == _ ∪ _ |- _ =>
symmetry in H
| H: _ ∪ _ == empty |- _ =>
let h1 := fresh "H" in
let h2 := fresh "H" in
destruct (union_empty_decompose _ _ H) as [h1 h2];
clear H
| H : ?t == _ |- _ =>
is_var_env t;
match goal with
| H': context [t] |- _ =>
match H' with
| H => fail 1
| _ => fail 2
end
| _ => clear H
end
| H: ILLVarInt.MILL.eq _ _ |- _ => apply eq_is_eq in H; try (injection H;clear H;intros;subst)
| H: _ ∈ _ |- _ => complete (vm_compute in H;discriminate)
| H: _ ∈ (add _ _) |- _ =>
destruct (mem_destruct _ _ _ H);clear H
(* | H : ?s == ?t |- _ => *)
(* (complete (apply eq_bool_complete in H;vm_compute in H; *)
(* discriminate))|| (progress repeat (rewrite H in * )) *)
| H : ?s == ?t |- _ =>
(progress repeat (rewrite H in * ))
| H: context C [ remove ?f ?env ] |- _ =>
match env with
context C' [ add f ?env' ] =>
let e := context C' [ env' ] in
setoid_replace (remove f env) with e in H by (apply eq_bool_correct;vm_compute;reflexivity)
end
| H:(?x ⊸ ?y) = _ |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: (_ ⊕ _) = _ |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H:(_ ⊗ _) = _ |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: _ & _ = _ |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: _ = (?x ⊸ ?y) |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: _ = (_ ⊕ _) |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: _ = (_ ⊗ _) |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: _ = _ & _ |- _ =>
try discriminate H;injection H;clear H;intros;subst
| H: ?delta ⊢ _, H' : ?delta == ∅ |- _ =>
apply False_ind;rewrite H' in H;clear - H;clean H;finish
| H: ?env⊢?g |- _ =>
(* try complete var_not_in_env_tac H; *)
match env with
| context C' [?env' \ ?f] =>
match env' with
| context C [add f ?env''] =>
let e' := context C [ env'' ] in
let e := context C' [ e' ] in
assert (heq: e == env) by (apply eq_bool_correct;vm_compute;reflexivity);
symmetry in heq;
let h := fresh "H" in
let i' := fresh "i" in
assert (h:(exists i':ILL_proof e g, Proof_eq.eq H i')) by (exists (ILL_proof_pre_morph _ _ _ heq H);
apply Proof_eq.sym;
apply Proof_eq.eq_pre_morph);
destruct h as [i' h];
rewrite exists_AtheseA_on_formula_proof_eq_compat with (h2:=i') (1:=h);
clear H h heq
end
end
| H: ?t == ?t', i: ?env⊢?f |- _ =>
match env with
| context [ t ] =>
let f_env :=
match eval pattern t in env with
| ?f _ => f
end
in
let env'0 := constr:(f_env t') in
let env' := eval cbv beta iota in env'0 in
let h := fresh "H" in
let i' := fresh "i" in
let heq := fresh "heq" in
assert (h:exists i': env'⊢f, Proof_eq.eq i i');[
assert (heq:env'==env) by (rewrite H;reflexivity);
symmetry in heq;
exists (ILL_proof_pre_morph _ _ _ heq i);
apply Proof_eq.sym;apply Proof_eq.eq_pre_morph
|
destruct h as [i' h];
rewrite exists_AtheseA_on_formula_proof_eq_compat with (h2:=i') (1:=h);clear i h;try (rewrite H in *;clear H)
]
end
end.
Ltac one_step p := clean p; (repeat tutu);try finish;auto with proof;eauto 3 with proof.
Ltac unusable_implies_tac n' f H :=
apply unusable_implies with (1:=H) (n:=n') (φ:=f);
[
vm_compute;reflexivity |
vm_compute;reflexivity |
vm_compute;reflexivity |
intros;decompose_add;repeat split;simpl in *;try discriminate;reflexivity].
Ltac unusable_var_strong_tac n1 n2 H :=
apply unusable_var_in_env_strong with (1:=H) (n:=n1);[
vm_compute;reflexivity|
vm_compute;reflexivity|
vm_compute;reflexivity|
vm_compute;reflexivity|
intros;decompose_add;simpl in *; repeat split;try discriminate;try reflexivity;auto;
intros _;right;
exists n2;
split;[((left;reflexivity)||(right;reflexivity))|split;[
intros;decompose_add;simpl;reflexivity|vm_compute;reflexivity]]].
(*
Lemma aux_10 : no_proof_for ({E ⊸ A, P, (P ⊸ M) & 1, V}) V.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_10 : proof.
Lemma aux_12 : no_proof_for ({P ⊸ M, P, V}) V.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_12 : proof.
Lemma aux_13 : no_proof_for ({1, P ⊸ M, P, V}) V.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_13 : proof.
Lemma aux_14 : no_proof_for ({P ⊸ M, P, (E ⊸ A) & 1, V}) V.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_14 : proof.
Lemma aux_16 : no_proof_for ({1, P, (P ⊸ M) & 1, V}) V.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_16 : proof.
Lemma aux_18 : no_proof_for ({E ⊸ A, A, P, (P ⊸ M) & 1}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_18 : proof.
Lemma aux_19 : no_proof_for ({M, A}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_19 : proof.
Lemma aux_20 : no_proof_for ({E ⊸ A, M, A}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_20 : proof.
Lemma aux_21 : no_proof_for ({1, M, A})(A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_21 : proof.
Lemma aux_22 : no_proof_for ({M, A, (E ⊸ A) & 1}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_22 : proof.
Lemma aux_23 : no_proof_for ({E ⊸ A, P ⊸ M, A, P}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_23 : proof.
Lemma aux_24 : no_proof_for ({P ⊸ M, A, P}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_24 : proof.
Lemma aux_25 : no_proof_for ({P ⊸ M, A, P}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_25 : proof.
Lemma aux_26 : no_proof_for ({1, P ⊸ M, A, P}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_26 : proof.
Lemma aux_27 : no_proof_for ({1, P ⊸ M, A, P}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P ⊸ M, A, P} ⊢ A ⊕ M
{1, P ⊸ M, A, P} ⊢ A
*)
Qed.
Hint Resolve aux_27 : proof.
Lemma aux_29 : no_proof_for ({P ⊸ M, A, P, (E ⊸ A) & 1}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_29 : proof.
Lemma aux_30 : no_proof_for ({P ⊸ M, A, P, (E ⊸ A) & 1}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{M, A} ⊢ A ⊕ M
{M, A, (E ⊸ A) & 1} ⊢ A ⊕ M
{E ⊸ A, P ⊸ M, A, P} ⊢ A ⊕ M
{1, P ⊸ M, A, P} ⊢ A ⊕ M
{P ⊸ M, A, P, (E ⊸ A) & 1} ⊢ A e
*)
Qed.
Hint Resolve aux_30 : proof.
Lemma aux_31 : no_proof_for ({A, P, (P ⊸ M) & 1}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_31 : proof.
Lemma aux_32 : no_proof_for ({A, P, (P ⊸ M) & 1}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(* ({A, P, (P ⊸ M) & 1}) A *)
Qed.
Hint Resolve aux_32 : proof.
Lemma aux_33 : no_proof_for ({1, A, P, (P ⊸ M) & 1}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_33 : proof.
Lemma aux_34 : no_proof_for ({1, A, P, (P ⊸ M) & 1}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{A, P, (P ⊸ M) & 1} ⊢ A ⊕ M
{1, A, P, (P ⊸ M) & 1} ⊢ A
*)
Qed.
Hint Resolve aux_34 : proof.
Lemma aux_35 : no_proof_for ({E ⊸ A, A, P, (P ⊸ M) & 1}) A.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_35 : proof.
Lemma aux_36 : no_proof_for ({A, P, (E ⊸ A) & 1, (P ⊸ M) & 1}) A.
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, A, P, (P ⊸ M) & 1} ⊢ A
*)
Qed.
Hint Resolve aux_36 : proof.
Lemma aux_38 : no_proof_for ({E ⊸ A, V ⊸ A, P, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_38 : proof.
Lemma aux_40 : no_proof_for ({V ⊸ A, P, V}) P.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_40 : proof.
Lemma aux_42 : no_proof_for ({V ⊸ A, P, (E ⊸ A) & 1, V}) P.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_42 : proof.
Lemma aux_43 : no_proof_for ({M, V ⊸ A, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_43 : proof.
Lemma aux_44 : no_proof_for ({M, V ⊸ A, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{M, V ⊸ A, V} ⊢ M
*)
Qed.
Hint Resolve aux_44 : proof.
Lemma aux_45 : no_proof_for ({E ⊸ A, M, V ⊸ A, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_45 : proof.
Lemma aux_46 : no_proof_for ({1, M, V ⊸ A, V}) (M).
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_46 : proof.
Lemma aux_47 : no_proof_for ({1, M, V ⊸ A, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_47 : proof.
Lemma aux_49 : no_proof_for ({M, V ⊸ A, (E ⊸ A) & 1, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_49 : proof.
Lemma aux_50 : no_proof_for ({M, V ⊸ A, (E ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, M, V ⊸ A, V} ⊢ A ⊕ M
{1, M, V ⊸ A, V} ⊢ A ⊕ M
{M, V ⊸ A, (E ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_50 : proof.
Lemma aux_41 : no_proof_for ({1, V ⊸ A, P, V}) P.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_41 : proof.
Lemma aux_52 : no_proof_for ({P ⊸ M, V ⊸ A, P, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_52 : proof.
Lemma aux_53 : no_proof_for ({P ⊸ M, V ⊸ A, P, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_53 : proof.
Lemma aux_54 : no_proof_for ({P ⊸ M, V ⊸ A, P, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P ⊸ M, V ⊸ A, P, V} ⊢ A
{P ⊸ M, V ⊸ A, P, V} ⊢ M
*)
Qed.
Hint Resolve aux_54 : proof.
Lemma aux_55 : no_proof_for ({1, P ⊸ M, V ⊸ A, P, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_55 : proof.
Lemma aux_56 : no_proof_for ({1, P ⊸ M, V ⊸ A, P, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_56 : proof.
Lemma aux_57 : no_proof_for ({1, P ⊸ M, V ⊸ A, P, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{1, V ⊸ A, P, V} ⊢ P
{P ⊸ M, V ⊸ A, P, V} ⊢ A ⊕ M
{1, P ⊸ M, V ⊸ A, P, V} ⊢ A
{1, P ⊸ M, V ⊸ A, P, V} ⊢ M
*)
Qed.
Hint Resolve aux_57 : proof.
Lemma aux_59 : no_proof_for ({P ⊸ M, V ⊸ A, P, (E ⊸ A) & 1, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_59 : proof.
Lemma aux_60 : no_proof_for ({E ⊸ A, P ⊸ M, V ⊸ A, P, V}) M.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_60 : proof.
Lemma aux_61 : no_proof_for ({P ⊸ M, V ⊸ A, P, (E ⊸ A) & 1, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_61 : proof.
Lemma aux_51 : no_proof_for ({E ⊸ A, P ⊸ M, V ⊸ A, P, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_51 : proof.
Lemma aux_62 : no_proof_for ({P ⊸ M, V ⊸ A, P, (E ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{V ⊸ A, P, (E ⊸ A) & 1, V} ⊢ P e
{V ⊸ A, P, V} ⊢ P e
{M, V ⊸ A, V} ⊢ A ⊕ M
{M, V ⊸ A, (E ⊸ A) & 1, V} ⊢ A ⊕ M
{E ⊸ A, P ⊸ M, V ⊸ A, P, V} ⊢ A ⊕ M
{1, P ⊸ M, V ⊸ A, P, V} ⊢ A ⊕ M
{P ⊸ M, V ⊸ A, P, (E ⊸ A) & 1, V} ⊢ A e
{P ⊸ M, V ⊸ A, P, (E ⊸ A) & 1, V} ⊢ M e
*)
Qed.
Hint Resolve aux_62 : proof.
Lemma aux_63 : no_proof_for ({V ⊸ A, P, (P ⊸ M) & 1, V}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_63 : proof.
Lemma aux_64 : no_proof_for ({V ⊸ A, P, (P ⊸ M) & 1, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_64 : proof.
Lemma aux_65 : no_proof_for ({V ⊸ A, P, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ A
{V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ M e
*)
Qed.
Hint Resolve aux_65 : proof.
Lemma aux_66 : no_proof_for ({1, V ⊸ A, P, (P ⊸ M) & 1, V}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_66 : proof.
Lemma aux_67 : no_proof_for ({1, V ⊸ A, P, (P ⊸ M) & 1, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_67 : proof.
Lemma aux_68 : no_proof_for ({1, V ⊸ A, P, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ A ⊕ M
{1, V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ A
{1, V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ M e
*)
Qed.
Hint Resolve aux_68 : proof.
Lemma aux_69 : no_proof_for ({E ⊸ A, V ⊸ A, P, (P ⊸ M) & 1, V}) A.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_69 : proof.
Lemma aux_70 : no_proof_for ({V ⊸ A, P, (E ⊸ A) & 1, (P ⊸ M) & 1, V}) A.
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, V ⊸ A, P, (P ⊸ M) & 1, V} ⊢ A
*)
Qed.
Hint Resolve aux_70 : proof.
Lemma aux_72 : no_proof_for ({V ⊸ A, P, (E ⊸ A) & 1, (P ⊸ M) & 1, V}) M.
Proof.
intro p.
unusable_var_strong_tac 5%nat 6%nat p.
Qed.
Hint Resolve aux_72 : proof.
Lemma aux_74 : no_proof_for ({E ⊸ A, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_74 : proof.
Lemma aux_75 : no_proof_for ({E ⊸ A, P, (V ⊸ A) & 1, V}) P.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_75 : proof.
Lemma aux_76 : no_proof_for ({P, (V ⊸ A) & 1, V}) P.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_76 : proof.
Lemma aux_77 : no_proof_for ({1, P, (V ⊸ A) & 1, V}) P.
Proof.
intros p; one_step p;eauto with proof.
(*
{P, (V ⊸ A) & 1, V} ⊢ P
*)
Qed.
Hint Resolve aux_77 : proof.
Lemma aux_78 : no_proof_for ({P, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) P.
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, P, (V ⊸ A) & 1, V} ⊢ P
{1, P, (V ⊸ A) & 1, V} ⊢ P
*)
Qed.
Hint Resolve aux_78 : proof.
Lemma aux_79 : no_proof_for ({E ⊸ A, M, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_79 : proof.
Lemma aux_80 : no_proof_for ({M, (V ⊸ A) & 1, V}) (M).
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_80 : proof.
Lemma aux_88 : no_proof_for ({M, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{M, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_88 : proof.
Lemma aux_82 : no_proof_for ({1, M, (V ⊸ A) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_82 : proof.
Lemma aux_83 : no_proof_for ({1, M, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{M, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{1, M, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_83 : proof.
Lemma aux_87 : no_proof_for ({E ⊸ A, M, (V ⊸ A) & 1, V}) M.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_87 : proof.
Lemma aux_85 : no_proof_for ({M, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, M, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_85 : proof.
Lemma aux_86 : no_proof_for ({M, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, M, (V ⊸ A) & 1, V} ⊢ A ⊕M
{1, M, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{M, (V ⊸ A) & 1, (E ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_86 : proof.
Lemma aux_89 : no_proof_for ({E ⊸ A, P ⊸ M, P, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_89 : proof.
Lemma aux_90 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_90 : proof.
Lemma aux_91 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_91 : proof.
Lemma aux_92 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ A e
{P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_92 : proof.
Lemma aux_93 : no_proof_for ({1, P ⊸ M, P, (V ⊸ A) & 1, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_93 : proof.
Lemma aux_94 : no_proof_for ({1, P ⊸ M, P, (V ⊸ A) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_94 : proof.
Lemma aux_95 : no_proof_for ({1, P ⊸ M, P, (V ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{1, P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ A e
{1, P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_95 : proof.
Lemma aux_97 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) A.
Proof.
intro p.
unusable_var_strong_tac 1%nat 8%nat p.
Qed.
Hint Resolve aux_97 : proof.
Lemma aux_98 : no_proof_for ({E ⊸ A, P ⊸ M, P, (V ⊸ A) & 1, V}) M.
Proof.
intro p;unusable_implies_tac 7%nat A p.
Qed.
Hint Resolve aux_98 : proof.
Lemma aux_99 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
(*
{E ⊸ A, P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_99 : proof.
Lemma aux_100 : no_proof_for ({P ⊸ M, P, (V ⊸ A) & 1, (E ⊸ A) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P, (V ⊸ A) & 1, (E ⊸ A) & 1, V} ⊢ P
{P, (V ⊸ A) & 1, V} ⊢ P
{M, (V ⊸ A) & 1, (E ⊸ A) & 1, V} ⊢ A ⊕ M
{M, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{E ⊸ A, P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{1, P ⊸ M, P, (V ⊸ A) & 1, V} ⊢ A ⊕ M
{P ⊸ M, P, (V ⊸ A) & 1, (E ⊸ A) & 1, V} ⊢ A e
{P ⊸ M, P, (V ⊸ A) & 1, (E ⊸ A) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_100 : proof.
Lemma aux_101 : no_proof_for ({P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_101 : proof.
Lemma aux_102 : no_proof_for ({P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_102 : proof.
Lemma aux_103 : no_proof_for ({P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P, (V ⊸ A) & 1, (P ⊸ M) & 1, V} ⊢ A
{P, (V ⊸ A) & 1, (P ⊸ M) & 1, V} ⊢ M
*)
Qed.
Hint Resolve aux_103 : proof.
Lemma aux_104 : no_proof_for ({1, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) A.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_104 : proof.
Lemma aux_105 : no_proof_for ({1, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) M.
Proof.
intros p; one_step p;eauto with proof.
Qed.
Hint Resolve aux_105 : proof.
Lemma aux_106 : no_proof_for ({1, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V}) (A ⊕ M).
Proof.
intros p; one_step p;eauto with proof.
(*
{P, (V ⊸ A) & 1, (P ⊸ M) & 1, V} ⊢ A ⊕ M
{1, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V} ⊢ A
{1, P, (V ⊸ A) & 1, (P ⊸ M) & 1, V} ⊢ M
*)
Qed.